
Improved Denoising Diffusion Probabilistic Models

Alex Nichol * 1 Prafulla Dhariwal * 1

Abstract
Denoising diffusion probabilistic models (DDPM)
are a class of generative models which have re-
cently been shown to produce excellent sam-
ples. We show that with a few simple modifi-
cations, DDPMs can also achieve competitive log-
likelihoods while maintaining high sample quality.
Additionally, we find that learning variances of
the reverse diffusion process allows sampling with
an order of magnitude fewer forward passes with
a negligible difference in sample quality, which
is important for the practical deployment of these
models. We additionally use precision and re-
call to compare how well DDPMs and GANs
cover the target distribution. Finally, we show
that the sample quality and likelihood of these
models scale smoothly with model capacity and
training compute, making them easily scalable.
We release our code at https://github.com/
openai/improved-diffusion.

1. Introduction
Sohl-Dickstein et al. (2015) introduced diffusion probabilis-
tic models, a class of generative models which match a
data distribution by learning to reverse a gradual, multi-step
noising process. More recently, Ho et al. (2020) showed
an equivalence between denoising diffusion probabilistic
models (DDPM) and score based generative models (Song
& Ermon, 2019; 2020), which learn a gradient of the log-
density of the data distribution using denoising score match-
ing (Hyvärinen, 2005). It has recently been shown that this
class of models can produce high-quality images (Ho et al.,
2020; Song & Ermon, 2020; Jolicoeur-Martineau et al.,
2020) and audio (Chen et al., 2020b; Kong et al., 2020),
but it has yet to be shown that DDPMs can achieve log-
likelihoods competitive with other likelihood-based models
such as autoregressive models (van den Oord et al., 2016c)
and VAEs (Kingma & Welling, 2013). This raises various
questions, such as whether DDPMs are capable of capturing
all the modes of a distribution. Furthermore, while Ho et al.

*Equal contribution 1OpenAI, San Francisco, USA. Correspon-
dence to: <alex@openai.com>, <prafulla@openai.com>.

(2020) showed extremely good results on the CIFAR-10
(Krizhevsky, 2009) and LSUN (Yu et al., 2015) datasets, it
is unclear how well DDPMs scale to datasets with higher di-
versity such as ImageNet. Finally, while Chen et al. (2020b)
found that DDPMs can efficiently generate audio using a
small number of sampling steps, it has yet to be shown that
the same is true for images.

In this paper, we show that DDPMs can achieve log-
likelihoods competitive with other likelihood-based models,
even on high-diversity datasets like ImageNet. To more
tightly optimise the variational lower-bound (VLB), we
learn the reverse process variances using a simple reparame-
terization and a hybrid learning objective that combines the
VLB with the simplified objective from Ho et al. (2020).

We find surprisingly that, with our hybrid objective, our
models obtain better log-likelihoods than those obtained
by optimizing the log-likelihood directly, and discover that
the latter objective has much more gradient noise during
training. We show that a simple importance sampling tech-
nique reduces this noise and allows us to achieve better
log-likelihoods than with the hybrid objective.

After incorporating learned variances into our model, we
surprisingly discovered that we could sample in fewer steps
from our models with very little change in sample quality.
While DDPM (Ho et al., 2020) requires hundreds of for-
ward passes to produce good samples, we can achieve good
samples with as few as 50 forward passes, thus speeding
up sampling for use in practical applications. In parallel to
our work, Song et al. (2020a) develops a different approach
to fast sampling, and we compare against their approach,
DDIM, in our experiments.

While likelihood is a good metric to compare against other
likelihood-based models, we also wanted to compare the
distribution coverage of these models with GANs. We use
the improved precision and recall metrics (Kynkäänniemi
et al., 2019) and discover that diffusion models achieve
much higher recall for similar FID, suggesting that they do
indeed cover a much larger portion of the target distribution.

Finally, since we expect machine learning models to con-
sume more computational resources in the future, we evalu-
ate the performance of these models as we increase model
size and training compute. Similar to (Henighan et al.,

ar
X

iv
:2

10
2.

09
67

2v
1

 [
cs

.L
G

]
 1

8
Fe

b
20

21

https://github.com/openai/improved-diffusion
https://github.com/openai/improved-diffusion

Improved Denoising Diffusion Probabilistic Models 2

2020), we observe trends that suggest predictable improve-
ments in performance as we increase training compute.

2. Denoising Diffusion Probabilistic Models
We briefly review the formulation of DDPMs from Ho et al.
(2020). This formulation makes various simplifying assump-
tions, such as a fixed noising process q which adds diagonal
Gaussian noise at each timestep. For a more general deriva-
tion, see Sohl-Dickstein et al. (2015).

2.1. Definitions

Given a data distribution x0 ∼ q(x0), we define a forward
noising process q which produces latents x1 through xT by
adding Gaussian noise at time t with variance βt ∈ (0, 1) as
follows:

q(x1, ..., xT |x0) :=

T∏
t=1

q(xt|xt−1) (1)

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (2)

Given sufficiently large T and a well behaved schedule of
βt, the latent xT is nearly an isotropic Gaussian distribution.
Thus, if we know the exact reverse distribution q(xt−1|xt),
we can sample xT ∼ N (0, I) and run the process in reverse
to get a sample from q(x0). However, since q(xt−1|xt)
depends on the entire data distribution, we approximate it
using a neural network as follows:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (3)

The combination of q and p is a variational auto-encoder
(Kingma & Welling, 2013), and we can write the variational
lower bound (VLB) as follows:

Lvlb := L0 + L1 + ...+ LT−1 + LT (4)
L0 := − log pθ(x0|x1) (5)

Lt−1 := DKL(q(xt−1|xt, x0) || pθ(xt−1|xt)) (6)
LT := DKL(q(xT |x0) || p(xT)) (7)

Aside from L0, each term of Equation 4 is a KL divergence
between two Gaussians, and can thus be evaluated in closed
form. To evaluate L0 for images, we assume that each color
component is divided into 256 bins, and we compute the
probability of pθ(x0|x1) landing in the correct bin (which is
tractable using the CDF of the Gaussian distribution). Also
note that while LT does not depend on θ, it will be close to
zero if the forward noising process adequately destroys the
data distribution so that q(xT |x0) ≈ N (0, I).

As noted in (Ho et al., 2020), the noising process defined
in Equation 2 allows us to sample an arbitrary step of the

noised latents directly conditioned on the input x0. With
αt := 1−βt and ᾱt :=

∏t
s=0 αs, we can write the marginal

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (8)

xt =
√
ᾱtx0 +

√
1− ᾱtε (9)

where ε ∼ N (0, I). Here, 1− ᾱt tells us the variance of the
noise for an arbitrary timestep, and we could equivalently
use this to define the noise schedule instead of βt.

Using Bayes theorem, one can calculate the posterior
q(xt−1|xt, x0) in terms of β̃t and µ̃t(xt, x0) which are de-
fined as follows:

β̃t :=
1− ᾱt−1

1− ᾱt
βt (10)

µ̃t(xt, x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

(11)

q(xt−1|xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI) (12)

2.2. Training in Practice

The objective in Equation 4 is a sum of independent terms
Lt−1, and Equation 9 provides an efficient way to sample
from an arbitrary step of the forward noising process and
estimate Lt−1 using the posterior (Equation 12) and prior
(Equation 3). We can thus randomly sample t and use the
expectation Et,x0,ε[Lt−1] to estimate Lvlb. Ho et al. (2020)
uniformly sample t for each image in each mini-batch.

There are many different ways to parameterize µθ(xt, t) in
the prior. The most obvious option is to predict µθ(xt, t)
directly with a neural network. Alternatively, the network
could predict x0, and this output could be used in Equation
11 to produce µθ(xt, t). The network could also predict the
noise ε and use Equations 9 and 11 to derive

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
(13)

Ho et al. (2020) found that predicting ε worked best, es-
pecially when combined with a reweighted loss function:

Lsimple = Et,x0,ε

[
||ε− εθ(xt, t)||2

]
(14)

This objective can be seen as a reweighted form of Lvlb
(without the terms affecting Σθ). The authors found that
optimizing this reweighted objective resulted in much better
sample quality than optimizing Lvlb directly, and explain
this by drawing a connection to generative score matching
(Song & Ermon, 2019; 2020).

One subtlety is that Lsimple provides no learning signal for
Σθ(xt, t). This is irrelevant, however, since Ho et al. (2020)
achieved their best results by fixing the variance to σ2

t I
rather than learning it. They found that they achieve similar

Improved Denoising Diffusion Probabilistic Models 3

sample quality using either σ2
t = βt or σ2

t = β̃t, which are
the upper and lower bounds on the variance given by q(x0)
being either isotropic Gaussian noise or a delta function,
respectively.

3. Improving the Log-likelihood
While Ho et al. (2020) found that DDPMs can generate high-
fidelity samples according to FID (Heusel et al., 2017) and
Inception Score (Salimans et al., 2016), they were unable to
achieve competitive log-likelihoods with these models. Log-
likelihood is a widely used metric in generative modeling,
and it is generally believed that optimizing log-likelihood
forces generative models to capture all of the modes of
the data distribution (Razavi et al., 2019). Additionally,
recent work (Henighan et al., 2020) has shown that small
improvements in log-likelihood can have a dramatic impact
on sample quality and learnt feature representations. Thus, it
is important to explore why DDPMs seem to perform poorly
on this metric, since this may suggest a fundamental short-
coming such as bad mode coverage. This section explores
several modifications to the algorithm described in Section
2 that, when combined, allow DDPMs to achieve much bet-
ter log-likelihoods on image datasets, suggesting that these
models enjoy the same benefits as other likelihood-based
generative models.

To study the effects of different modifications, we train
fixed model architectures with fixed hyperparameters on
the ImageNet 64 × 64 (van den Oord et al., 2016b) and
CIFAR-10 (Krizhevsky, 2009) datasets. While CIFAR-10
has seen more usage for this class of models, we chose
to study ImageNet 64 × 64 as well because it provides a
good trade-off between diversity and resolution, allowing us
to train models quickly without worrying about overfitting.
Additionally, ImageNet 64×64 has been studied extensively
in the context of generative modeling (van den Oord et al.,
2016c; Menick & Kalchbrenner, 2018; Child et al., 2019;
Roy et al., 2020), allowing us to compare DDPMs directly
to many other generative models.

The setup from Ho et al. (2020) (optimizing Lsimple while
setting σ2

t = βt and T = 1000) achieves a log-likelihood
of 3.99 (bits/dim) on ImageNet 64× 64 after 200K training
iterations. We found in early experiments that we could
get a boost in log-likelihood by increasing T from 1000 to
4000; with this change, the log-likelihood improves to 3.77.
For the remainder of this section, we use T = 4000, but we
explore this choice in Section 4.

3.1. Learning Σθ(xt, t)

In Ho et al. (2020), the authors set Σθ(xt, t) = σ2
t I, where

σt is not learned. Oddly, they found that fixing σ2
t to βt

yielded roughly the same sample quality as fixing it to β̃t.

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

100

3×10−1

4×10−1

6×10−1

̃ β t
/β

t

T ̃ 100 steps
T ̃ 1000 steps
T ̃ 10000 steps

Figure 1. The ratio β̃t/βt for every diffusion step for diffusion
processes of different lengths.

0 500 1000 1500 2000 2500 3000 3500 4000
diffusion step

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

lo
ss
 te

rm
 (b

its
)

Figure 2. Terms of the VLB vs diffusion step. The first few terms
contribute most to NLL.

Considering that βt and β̃t represent two opposite extremes,
it is reasonable to ask why this choice doesn’t affect samples.
One clue is given by Figure 1, which shows that βt and β̃t
are almost equal except near t = 0, i.e. where the model
is dealing with imperceptible details. Furthermore, as we
increase the number of diffusion steps, βt and β̃t seem to
remain close to one another for more of the diffusion process.
This suggests that, in the limit of infinite diffusion steps,
the choice of σt might not matter at all for sample quality.
In other words, as we add more diffusion steps, the model
mean µθ(xt, t) determines the distribution much more than
Σθ(xt, t).

While the above argument suggests that fixing σt is a reason-
able choice for the sake of sample quality, it says nothing
about log-likelihood. In fact, Figure 2 shows that the first
few steps of the diffusion process contribute the most to
the variational lower bound. Thus, it seems likely that we
could improve log-likelihood by using a better choice of
Σθ(xt, t). To achieve this, we must learn Σθ(xt, t) without
the instabilities encountered by Ho et al. (2020).

Since Figure 1 shows that the reasonable range for Σθ(xt, t)
is very small, it would be hard for a neural network to predict
Σθ(xt, t) directly, even in the log domain, as observed by
Ho et al. (2020). Instead, we found it better to parameterize
the variance as an interpolation between βt and β̃t in the

Improved Denoising Diffusion Probabilistic Models 4

Figure 3. Latent samples from linear (top) and cosine (bottom)
schedules respectively at linearly spaced values of t from 0 to T .
The latents in the last quarter of the linear schedule are almost
purely noise, whereas the cosine schedule adds noise more slowly

0.0 0.1 0.2 0.3 0.4 0.5
fraction of reverse diffusion process skipped

20

30

40

50

60

FI
D

cosine schedule
linear schedule

Figure 4. FID when skipping a prefix of the reverse diffusion
process on ImageNet 64 × 64.

log domain. In particular, our model outputs a vector v
containing one component per dimension, and we turn this
output into variances as follows:

Σθ(xt, t) = exp(v log βt + (1− v) log β̃t) (15)

We did not apply any constraints on v, theoretically allowing
the model to predict variances outside of the interpolated
range. However, we did not observe the network doing
this in practice, suggesting that the bounds for Σθ(xt, t) are
indeed expressive enough.

Since Lsimple doesn’t depend on Σθ(xt, t), we define a new
hybrid objective:

Lhybrid = Lsimple + λLvlb (16)

For our experiments, we set λ = 0.001 to prevent Lvlb from
overwhelming Lsimple. Along this same line of reasoning,
we also apply a stop-gradient to the µθ(xt, t) output for the
Lvlb term. This way, Lvlb can guide Σθ(xt, t) while Lsimple
is still the main source of influence over µθ(xt, t).

3.2. Improving the Noise Schedule

We found that while the linear noise schedule used in Ho
et al. (2020) worked well for high resolution images, it was
sub-optimal for images of resolution 64× 64 and 32× 32.
In particular, the end of the forward noising process is too

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

0.0

0.2

0.4

0.6

0.8

1.0

̄ α t

linēr
cosine

Figure 5. ᾱt throughout diffusion in the linear schedule and our
proposed cosine schedule.

noisy, and so doesn’t contribute very much to sample quality.
This can be seen visually in Figure 3. The result of this
effect is studied in Figure 4, where we see that a model
trained with the linear schedule does not get much worse (as
measured by FID) when we skip up to 20% of the reverse
diffusion process.

To address this problem, we construct a different noise
schedule in terms of ᾱt:

ᾱt =
f(t)

f(0)
, f(t) = cos

(
t/T + s

1 + s
· π

2

)2

(17)

To go from this definition to variances βt, we note that
βt = 1− ᾱt

ᾱt−1
. In practice, we clip βt to be no larger than

0.999 to prevent singularities at the end of the diffusion
process near t = T .

Our cosine schedule is designed to have a linear drop-off of
ᾱt in the middle of the process, while changing very little
near the extremes of t = 0 and t = T to prevent abrupt
changes in noise level. Figure 5 shows how ᾱt progresses
for both schedules. We can see that the linear schedule from
Ho et al. (2020) falls towards zero much faster, destroying
information more quickly than necessary.

We use a small offset s to prevent βt from being too small
near t = 0, since we found that having tiny amounts of
noise at the beginning of the process made it hard for the
network to predict ε accurately enough. In particular, we
selected s such that

√
β0 was slightly smaller than the pixel

bin size 1/127.5, which gives s = 0.008. We chose to
use cos2 in particular because it is a common mathematical
function with the shape we were looking for. This choice
was arbitrary, and we expect that many other functions with
similar shapes would work as well.

3.3. Reducing Gradient Noise

We expected to achieve the best log-likelihoods by optimiz-
ing Lvlb directly, rather than by optimizing Lhybrid. However,

Improved Denoising Diffusion Probabilistic Models 5

0 50 100 150 200 250
training iterations (1e3)

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

tra
in
in
g
lo
g
lo
ss
 (b

its
/d
im

)
Lvlb
Lhybrid
Lvlb (resampled)

Figure 6. Learning curves comparing the log-likelihoods achieved
by different objectives on ImageNet 64 × 64.

0 25 50 75 100 125 150 175 200
training step (1e3)

10−1

100

101

102

103

104

105

gr
ad

ie
nt
 n
oi
se

 sc
al
e

Lvlb
Lhybrid

Figure 7. Gradient noise scales for the Lvlb and Lhybrid objectives
on ImageNet 64 × 64.

we were surprised to find that Lvlb was actually quite diffi-
cult to optimize in practice, at least on the diverse ImageNet
64×64 dataset. Figure 6 shows the learning curves for both
Lvlb and Lhybrid. Both curves are noisy, but the hybrid objec-
tive clearly achieves better log-likelihoods on the training
set given the same amount of training time.

We hypothesized that the gradient of Lvlb was much noisier
than that of Lhybrid. We confirmed this by evaluating the
gradient noise scales (McCandlish et al., 2018) for models
trained with both objectives, as shown in Figure 7. Thus,
we sought out a way to reduce the variance of Lvlb in order
to optimize directly for log-likelihood.

Noting that different terms of Lvlb have greatly different
magnitudes (Figure 2), we hypothesized that sampling t
uniformly causes unnecessary noise in the Lvlb objective.
To address this, we employ importance sampling:

Lvlb = Et∼pt

[
Lt
pt

]
, where pt ∝

√
E[L2

t] and
∑

pt = 1

(18)
Since E[L2

t] is unknown beforehand and may change
throughout training, we maintain a history of the previous
10 values for each loss term, and update this dynamically
during training. At the beginning of training, we sample t

Table 1. Ablating schedule and objective on ImageNet 64 × 64.

Iters T Schedule Objective NLL FID

200K 1K linear Lsimple 3.99 32.5
200K 4K linear Lsimple 3.77 31.3

200K 4K linear Lhybrid 3.66 32.2
200K 4K cosine Lsimple 3.68 27.0
200K 4K cosine Lhybrid 3.62 28.0
200K 4K cosine Lvlb 3.57 56.7

1.5M 4K cosine Lhybrid 3.57 19.2
1.5M 4K cosine Lvlb 3.53 40.1

Table 2. Ablating schedule and objective on CIFAR-10.

Iters T Schedule Objective NLL FID

500K 1K linear Lsimple 3.73 3.29
500K 4K linear Lsimple 3.37 2.90

500K 4K linear Lhybrid 3.26 3.07
500K 4K cosine Lsimple 3.26 3.05
500K 4K cosine Lhybrid 3.17 3.19
500K 4K cosine Lvlb 2.94 11.47

uniformly until we draw 10 samples for every t ∈ [0, T −1].

With this importance sampled objective, we are able to
achieve our best log-likelihoods by optimizing Lvlb. This
can be seen in Figure 6 as the Lvlb (resampled) curve. The
figure also shows that the importance sampled objective is
considerably less noisy than the original, uniformly sam-
pled objective. We found that the importance sampling
technique was not helpful when optimizing the less-noisy
Lhybrid objective directly.

3.4. Results and Ablations

In this section, we ablate the changes we have made to
achieve better log-likelihoods. Table 1 summarizes the re-
sults of our ablations on ImageNet 64 × 64, and Table 2
shows them for CIFAR-10. We also trained our best Ima-
geNet 64× 64 models for 1.5M iterations, and report these
results as well. Lvlb and Lhybrid were trained with learned
sigmas using the parameterization from Section 3.1. For
Lvlb, we used the resampling scheme from Section 3.3.

Based on our ablations, using Lhybrid and our cosine sched-
ule improves log-likelihood while keeping similar FID as
the baseline from Ho et al. (2020). Optimizing Lvlb further
improves log-likelihood at the cost of a higher FID. We
generally prefer to use Lhybrid over Lvlb as it gives a boost
in likelihood without sacrificing sample quality.

In Table 3 we compare our best likelihood models against
prior work, showing that these models are competitive with
the best conventional methods in terms of log-likelihood.

Improved Denoising Diffusion Probabilistic Models 6

Table 3. Comparison of DDPMs to other likelihood-based mod-
els on CIFAR-10 and Unconditional ImageNet 64 × 64. NLL is
reported in bits/dim. On ImageNet 64 × 64, our model is compet-
itive with the best convolutional models, but is worse than fully
transformer-based architectures.

Model ImageNet CIFAR

Glow (Kingma & Dhariwal, 2018) 3.81 3.35
Flow++ (Ho et al., 2019) 3.69 3.08
PixelCNN (van den Oord et al., 2016c) 3.57 3.14
SPN (Menick & Kalchbrenner, 2018) 3.52 -
NVAE (Vahdat & Kautz, 2020) - 2.91
Very Deep VAE (Child, 2020) 3.52 2.87
PixelSNAIL (Chen et al., 2018) 3.52 2.85
Image Transformer (Parmar et al., 2018) 3.48 2.90
Sparse Transformer (Child et al., 2019) 3.44 2.80
Routing Transformer (Roy et al., 2020) 3.43 -

DDPM (Ho et al., 2020) 3.77 3.70
DDPM (cont flow) (Song et al., 2020b) - 2.99
Improved DDPM (ours) 3.53 2.94

4. Improving Sampling Speed
All of our models were trained with 4000 diffusion steps,
and thus producing a single sample takes several minutes on
a modern GPU. In this section, we explore how performance
scales if we reduce the steps used during sampling, and find
that our pre-trained Lhybrid models can produce high-quality
samples with many fewer diffusion steps than they were
trained with (without any fine-tuning). Reducing the steps
in this way makes it possible to sample from our models
in a number of seconds rather than minutes, and greatly
improves the practical applicability of image DDPMs.

For a model trained with T diffusion steps, we would
typically sample using the same sequence of t values
(1, 2, ..., T) as used during training. However, it is also
possible to sample using an arbitrary subsequence S of t
values. Given the training noise schedule ᾱt, for a given
sequence S we can obtain the sampling noise schedule ᾱSt ,
which can be then used to obtain corresponding sampling
variances

βSt
= 1− ᾱSt

ᾱSt−1

, β̃St
=

1− ᾱSt−1

1− ᾱSt

βSt
(19)

Now, since Σθ(xSt , St) is parameterized as a range between
βSt

and β̃St
, it will automatically be rescaled for the shorter

diffusion process. We can thus compute p(xSt−1
|xSt

) as
N (µθ(xSt

, St),Σθ(xSt
, St)).

To reduce the number of sampling steps from T to K, we
use K evenly spaced real numbers between 1 and T (inclu-
sive), and then round each resulting number to the nearest
integer. In Figure 8, we evaluate FIDs for an Lhybrid model
and an Lsimple model that were trained with 4000 diffusion

Lsimple (σ2
t = βt, mid-training)

Lsimple (σ2
t = βt, fully trained)

Lsimple (σ2
t = ̃βt, mid-training)

Lsimple (σ2
t = ̃βt, fully trained)

Lsimple (̃̃IM, mid-training)
Lsimple (̃̃IM, fully trained)
Lhybrid (ours, mid-training)
Lhybrid (ours, fully trained)

102 103

sampling steps

15.0

20.0

25.0

30.0

35.0

40.0

FI
D

102 103

sampling steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

FI
D

Figure 8. FID versus number of sampling steps, for models trained
on ImageNet 64 × 64 (top) and CIFAR-10 (bottom). All models
were trained with 4000 diffusion steps.

steps, using 25, 50, 100, 200, 400, 1000, and 4000 sampling
steps. We do this for both a fully-trained checkpoint, and
a checkpoint mid-way through training. For CIFAR-10 we
used 200K and 500K training iterations, and for ImageNet-
64 we used 500K and 1500K training iterations. We find
that the Lsimple models with fixed sigmas (with both the
larger σ2

t = βt and the smaller σ2
t = β̃t) suffer much more

in sample quality when using a reduced number of sampling
steps, whereas our Lhybrid model with learnt sigmas main-
tains high sample quality. With this model, 100 sampling
steps is sufficient to achieve near-optimal FIDs for our fully
trained models.

Parallel to our work, Song et al. (2020a) propose a fast
sampling algorithm for DDPMs by producing a new im-
plicit model that has the same marginal noise distributions,
but deterministically maps noise to images. We include
their algorithm, DDIM, in Figure 8, finding that DDIM pro-
duces better samples with fewer than 50 sampling steps, but
worse samples when using 50 or more steps. Interestingly,
DDIM performs worse at the start of training, but closes the
gap to other samplers as training continues. We found that
our striding technique drastically reduced performance of
DDIM, so our DDIM results instead use the constant strid-

Improved Denoising Diffusion Probabilistic Models 7

Table 4. Sample quality comparison on class-conditional Ima-
geNet 64 × 64. Precision and recall (Kynkäänniemi et al., 2019)
are measured using Inception-V3 features and K = 5. We trained
BigGAN-deep for 125K iterations, and did not use truncation for
sampling to maximize recall for the GAN.

Model FID Prec. Recall

BigGAN-deep (Brock et al., 2018) 4.06 0.86 0.59
Improved Diffusion (small) 6.92 0.77 0.72
Improved Diffusion (large) 2.92 0.82 0.71

Figure 9. Class-conditional ImageNet 64 × 64 samples generated
using 250 sampling steps from Lhybrid model (FID 2.92). The
classes are 9: ostrich, 11: goldfinch, 130: flamingo, 141: redshank,
154: pekinese, 157: papillon, 97: drake and 28: spotted salamander.
We see that there is a high diversity in each class, suggesting good
coverage of the target distribution

ing1 from Song et al. (2020a), wherein the final timestep is
T − T/K + 1 rather than T . The other samplers performed
slightly better with our striding.

5. Comparison to GANs
While likelihood is a good proxy for mode-coverage, it is
difficult to compare to GANs with this metric. Instead, we
turn to precision and recall (Kynkäänniemi et al., 2019).
Since it is common in the GAN literature to train class-
conditional models, we do the same for this experiment.
To make our models class-conditional, we inject class in-
formation through the same pathway as the timestep t. In
particular, we add a class embedding vi to the timestep
embedding et, and pass this embedding to residual blocks

1We additionally tried the quadratic stride from Song et al.
(2020a), but found that it hurt sample quality when combined with
our cosine schedule.

throughout the model. We train using the Lhybrid objective
and use 250 sampling steps. We train two models: a ”small”
model with 100M parameters for 1.7M training steps, and
a larger model with 270 million parameters for 250K it-
erations. We train one BigGAN-deep model with 100M
parameters across the generator and discriminator.

When computing metrics for this task, we generated 50K
samples (rather than 10K) to be directly comparable to other
works.2 This is the only ImageNet 64× 64 FID we report
that was computed using 50K samples. For FID, the ref-
erence distribution features were computed over the full
training set, following (Brock et al., 2018).

Figure 9 shows our samples from the larger model, and
Table 4 summarizes our results. We find that BigGAN-
deep outperforms our smaller model in terms of FID, but
struggles in terms of recall. This suggests that diffusion
models are better at covering the modes of the distribution
than comparable GANs.

6. Scaling Model Size
In the previous sections, we showed algorithmic changes
that improved log-likelihood and FID without changing the
amount of training compute. However, a trend in modern
machine learning is that larger models and more training
time tend to improve model performance (Kaplan et al.,
2020; Chen et al., 2020a; Brown et al., 2020). Given this
observation, we investigate how FID and NLL scale as a
function of training compute. Our results, while prelimi-
nary, suggest that DDPMs improve in a predictable way as
training compute increases.

To measure how performance scales with training compute,
we train four different models on ImageNet 64 × 64 with
the Lhybrid objective described in Section 3.1. To change
model capacity, we apply a depth multiplier across all lay-
ers, such that the first layer has either 64, 96, 128, or 192
channels. Note that our previous experiments used 128
channels in the first layer. Since the depth of each layer af-
fects the scale of the initial weights, we scale the Adam
(Kingma & Ba, 2014) learning rate for each model by
1/
√

channel multiplier, such that the 128 channel model
has a learning rate of 0.0001 (as in our other experiments).

Figure 10 shows how FID and NLL improve relative to
theoretical training compute.3 The FID curve looks approx-
imately linear on a log-log plot, suggesting that FID scales
according to a power law (plotted as the black dashed line).
The NLL curve does not fit a power law as cleanly, suggest-
ing that validation NLL scales in a less-favorable manner

2We found that using more samples led to a decrease in esti-
mated FID of roughly 2 points.

3The x-axis assumes full hardware utilization

Improved Denoising Diffusion Probabilistic Models 8

1017 1018 1019 1020
compute (FLOPs)

20.0

30.0

40.0

50.0

60.0
70.0

FI
D

64 ch (30M params)
96 ch (68M params)
128 ch (120M params)
192 ch (270M params)
4.00 + (2.500e-25*C)^-0.22

1017 1018 1019 1020

compute (FLOPs)

3.55

3.60

3.65

3.70

3.75

3.80

NL
L

(b
its

/d
im

)

64 ch (30M params)
96 ch (68M params)
128 ch (120M params)
192 ch (270M params)
3.40 + (3.000e-15*C)^-0.17

Figure 10. FID and validation NLL throughout training on Im-
ageNet 64 × 64 for different model sizes. The constant for the
FID trend line was approximated using the FID of in-distribution
data. For the NLL trend line, the constant was approximated by
rounding down the current state-of-the-art NLL (Roy et al., 2020)
on this dataset.

than FID. This could be caused by a variety of factors, such
as 1) an unexpectedly high irreducible loss (Henighan et al.,
2020) for this type of diffusion model, or 2) the model over-
fitting to the training distribution. We also note that these
models do not achieve optimal log-likelihoods in general
because they were trained with our Lhybrid objective and not
directly with Lvlb to keep both good log-likelihoods and
sample quality.

7. Related Work
Chen et al. (2020b) and Kong et al. (2020) are two recent
works that use DDPMs to produce high fidelity audio condi-
tioned on mel-spectrograms. Concurrent to our work, Chen
et al. (2020b) use a combination of improved schedule and
L1 loss to allow sampling with fewer steps with very lit-
tle reduction in sample quality. However, compared to our
unconditional image generation task, their generative task
has a strong input conditioning signal provided by the mel-
spectrograms, and we hypothesize that this makes it easier
to sample with fewer diffusion steps.

Jolicoeur-Martineau et al. (2020) explored score matching
in the image domain, and constructed an adversarial training
objective to produce better x0 predictions. However, they
found that choosing a better network architecture removed

the need for this adversarial objective, suggesting that the ad-
versarial objective is not necessary for powerful generative
modeling.

Parallel to our work, Song et al. (2020a) and Song et al.
(2020b) propose fast sampling algorithms for models trained
with the DDPM objective by leveraging different sampling
processes. Song et al. (2020a) does this by deriving an im-
plicit generative model that has the same marginal noise
distributions as DDPMs while deterministically mapping
noise to images. Song et al. (2020b) model the diffusion
process as the discretization of a continuous SDE, and ob-
serve that there exists an ODE that corresponds to sampling
from the reverse SDE. By varying the numerical precision
of an ODE solver, they can sample with fewer function
evaluations. However, they note that this technique obtains
worse samples than ancestral sampling when used directly,
and only achieves better FID when combined with Langevin
corrector steps. This in turn requires hand-tuning of a signal-
to-noise ratio for the Langevin steps. Our method allows
fast sampling directly from the ancestral process, which
removes the need for extra hyperparameters.

Also in parallel, Gao et al. (2020) develops a diffusion model
with reverse diffusion steps modeled by an energy-based
model. A potential implication of this approach is that fewer
diffusion steps should be needed to achieve good samples.

8. Conclusion
We have shown that, with a few modifications, DDPMs can
sample much faster and achieve better log-likelihoods with
little impact on sample quality. The likelihood is improved
by learning Σθ using our parameterization and Lhybrid ob-
jective. This brings the likelihood of these models much
closer to other likelihood-based models. We surprisingly
discover that this change also allows sampling from these
models with many fewer steps.

We have also found that DDPMs can match the sample qual-
ity of GANs while achieving much better mode coverage
as measured by recall. Furthermore, we have investigated
how DDPMs scale with the amount of available training
compute, and found that more training compute trivially
leads to better sample quality and log-likelihood.

The combination of these results makes DDPMs an attrac-
tive choice for generative modeling, since they combine
good log-likelihoods, high-quality samples, and reasonably
fast sampling with a well-grounded, stationary training ob-
jective that scales easily with training compute. These re-
sults indicate that DDPMs are a promising direction for
future research.

Improved Denoising Diffusion Probabilistic Models 9

References
Brock, A., Donahue, J., and Simonyan, K. Large scale gan

training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096, 2018.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners, 2020.

Chen, M., Radford, A., Child, R., Wu, J., Jun, H.,
Dhariwal, P., Luan, D., and Sutskever, I. Genera-
tive pretraining from pixels, 2020a. URL https:
//cdn.openai.com/papers/Generative_
Pretraining_from_Pixels_V2.pdf.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and
Chan, W. Wavegrad: Estimating gradients for waveform
generation, 2020b.

Chen, X., Mishra, N., Rohaninejad, M., and Abbeel, P.
Pixelsnail: An improved autoregressive generative model.
In International Conference on Machine Learning, pp.
864–872. PMLR, 2018.

Child, R. Very deep vaes generalize autoregressive models
and can outperform them on images. arXiv preprint
arXiv:2011.10650, 2020.

Child, R., Gray, S., Radford, A., and Sutskever, I. Generat-
ing long sequences with sparse transformers, 2019.

Gao, R., Song, Y., Poole, B., Wu, Y. N., and Kingma, D. P.
Learning energy-based models by diffusion recovery like-
lihood, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015.

Henighan, T., Kaplan, J., Katz, M., Chen, M., Hesse, C.,
Jackson, J., Jun, H., Brown, T. B., Dhariwal, P., Gray, S.,
Hallacy, C., Mann, B., Radford, A., Ramesh, A., Ryder,
N., Ziegler, D. M., Schulman, J., Amodei, D., and Mc-
Candlish, S. Scaling laws for autoregressive generative
modeling, 2020.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
Neural Information Processing Systems 30 (NIPS 2017),
2017.

Ho, J., Chen, X., Srinivas, A., Duan, Y., and Abbeel, P.
Flow++: Improving flow-based generative models with
variational dequantization and architecture design. arXiv
preprint arXiv:1902.00275, 2019.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models, 2020.

Hyvärinen, A. Estimation of non-normalized statistical
models by score matching. Journal of Machine Learning
Research, 6(Apr):695–709, 2005.

Jolicoeur-Martineau, A., Piché-Taillefer, R., des Combes,
R. T., and Mitliagkas, I. Adversarial score matching and
improved sampling for image generation, 2020.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models,
2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2014.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Advances in neural
information processing systems, pp. 10215–10224, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes, 2013.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
Diffwave: A versatile diffusion model for audio synthesis,
2020.

Krizhevsky, A. Learning multiple layers of
features from tiny images, 2009. URL
http://www.cs.toronto.edu/˜kriz/
learning-features-2009-TR.pdf.

Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., and
Aila, T. Improved precision and recall metric for assess-
ing generative models, 2019.

McCandlish, S., Kaplan, J., Amodei, D., and Team, O. D.
An empirical model of large-batch training, 2018.

Menick, J. and Kalchbrenner, N. Generating high fidelity im-
ages with subscale pixel networks and multidimensional
upscaling, 2018.

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, Ł., Shazeer,
N., Ku, A., and Tran, D. Image transformer. arXiv
preprint arXiv:1802.05751, 2018.

Ravuri, S. and Vinyals, O. Classification accuracy score
for conditional generative models. arXiv preprint
arXiv:1905.10887, 2019.

https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Improved Denoising Diffusion Probabilistic Models 10

Razavi, A., van den Oord, A., and Vinyals, O. Generating
diverse high-fidelity images with vq-vae-2, 2019.

Roy, A., Saffar, M., Vaswani, A., and Grangier, D. Efficient
content-based sparse attention with routing transformers,
2020.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans, 2016.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P. Pix-
elcnn++: Improving the pixelcnn with discretized logistic
mixture likelihood and other modifications, 2017.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models, 2020a.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. In Advances in Neural
Information Processing Systems, pp. 11918–11930, 2019.

Song, Y. and Ermon, S. Improved techniques for train-
ing score-based generative models. arXiv preprint
arXiv:2006.09011, 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations, 2020b.

Vahdat, A. and Kautz, J. Nvae: A deep hierarchical vari-
ational autoencoder. arXiv preprint arXiv:2007.03898,
2020.

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K.
Pixel recurrent neural networks, 2016a.

van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt,
L., Graves, A., and Kavukcuoglu, K. Conditional image
generation with pixelcnn decoders, 2016b. URL http:
//image-net.org/small/download.php.

van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt,
L., Graves, A., and Kavukcuoglu, K. Conditional image
generation with pixelcnn decoders, 2016c.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2017.

Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and
Xiao, J. Lsun: Construction of a large-scale image dataset
using deep learning with humans in the loop, 2015.

http://image-net.org/small/download.php
http://image-net.org/small/download.php

Improved Denoising Diffusion Probabilistic Models 11

A. Hyperparameters
For all of our experiments, we use a UNet model architec-
ture4 similar to that used by Ho et al. (2020). We changed
the attention layers to use multi-head attention (Vaswani
et al., 2017), and opted to use four attention heads rather
than one (while keeping the same total number of channels).
We employ attention not only at the 16x16 resolution, but
also at the 8x8 resolution. Additionally, we changed the
way the model conditions on t. In particular, instead of com-
puting a conditioning vector v and injecting it into hidden
state h as GroupNorm(h + v), we compute conditioning
vectors w and b and inject them into the hidden state as
GroupNorm(h)(w + 1) + b. We found in preliminary ex-
periments on ImageNet 64 × 64 that these modifications
slightly improved FID.

For ImageNet 64× 64 the architecture we use is described
as follows. The downsampling stack performs four steps of
downsampling, each with three residual blocks (He et al.,
2015). The upsampling stack is setup as a mirror image of
the downsampling stack. From highest to lowest resolution,
the UNet stages use [C, 2C, 3C, 4C] channels, respectively.
In our ImageNet 64 × 64 ablations, we set C = 128, but
we experiment with scaling C in a later section. We esti-
mate that, with C = 128, our model is comprised of 120M
parameters and requires roughly 39 billion FLOPs in the
forward pass.

For our CIFAR-10 experiments, we use a smaller model with
three resblocks per downsampling stage and layer widths
[C, 2C, 2C, 2C] with C = 128. We swept over dropout
values {0.1, 0.2, 0.3} and found that 0.1 worked best for
the linear schedule while 0.3 worked best for our cosine
schedule. We expand upon this in Section F.

We use Adam (Kingma & Ba, 2014) for all of our experi-
ments. For most experiments, we use a batch size of 128,
a learning rate of 10−4, and an exponential moving aver-
age (EMA) over model parameters with a rate of 0.9999.
For our scaling experiments, we vary the learning rate to
accomodate for different model sizes. For our larger class-
conditional ImageNet 64 × 64 experiments, we scaled up
the batch size to 2048 for faster training on more GPUs.

When using the linear noise schedule from Ho et al. (2020),
we linearly interpolate from β1 = 0.0001/4 to β4000 =
0.02/4 to preserve the shape of ᾱt for the T = 4000 sched-
ule.

When computing FID we produce 50K samples from our
models, except for unconditional ImageNet 64× 64 where
we produce 10K samples. Using only 10K samples biases

4In initial experiments, we found that a ResNet-style architec-
ture with no downsampling achieved better log-likelihoods but
worse FIDs than the UNet architecture.

the FID to be higher, but requires much less compute for
sampling and helps do large ablations. Since we mainly use
FID for relative comparisons on unconditional ImageNet
64×64, this bias is acceptable. For computing the reference
distribution statistics we follow prior work (Ho et al., 2020;
Brock et al., 2018) and use the full training set for CIFAR-10
and ImageNet, and 50K training samples for LSUN. Note
that unconditional ImageNet 64×64 models are trained and
evaluated using the official ImageNet-64 dataset (van den
Oord et al., 2016a), whereas for class conditional ImageNet
64×64 and 256×256 we center crop and area downsample
images (Brock et al., 2018).

B. Fast Sampling on LSUN 256× 256

Lsimple (σ2
t = βt, batch=64, lr=2e-5)

Lsimple (σ2
t = βt, batch=128, lr=1e-4)

Lsimple (σ2
t = ̃βt, batch=64, lr=2e-5)

Lsimple (σ2
t = ̃βt, batch=128, lr=1e-4)

Lsimple (̃̃IM, batch=64, lr=2e-5)
Lsimple (̃̃IM, batch=128, lr=1e-4)
Lhybrid (batch=64, lr=2e-5)
Lhybrid (batch=128, lr=1e-4)

102 103

sampling steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
FI
D

Figure 11. FID vs. number of sampling steps from an LSUN
256 × 256 bedroom model.

To test the effectiveness of our Lhybrid models on a high-
resolution domain, we trained both Lhybrid and Lsimple mod-
els on the LSUN bedroom (Yu et al., 2015) dataset. We
train two models: one with batch size 64 and learning rate
2 × 10−5 as in Ho et al. (2020), and another with a larger
batch size 128 and learning rate 10−4. All models were
trained with 153.6M examples, which is 2.4M training itera-
tions with batch size 64.

Our results are displayed in Figure 11. We find that DDIM
outperforms our Lhybrid model when using fewer than 50
diffusion steps, while our Lhybrid model outperforms DDIM
with more than 50 diffusion steps. Interestingly, we note
that DDIM benefits from a smaller learning rate and batch
size, whereas our method is able to take advantage of a
larger learning rate and batch size.

Improved Denoising Diffusion Probabilistic Models 12

C. Sample Quality on ImageNet 256× 256

We trained two models on class conditional ImageNet
256× 256. The first is a usual diffusion model that directly
models the 256× 256 images. The second model reduces
compute by chaining a pretrained 64× 64 model p(x64|y)
with another upsampling diffusion model p(x256|x64, y) to
upsample images to 256× 256. For the upsampling model,
the downsampled image x64 is passed as extra conditioning
input to the UNet. This is similar to VQ-VAE-2 (Razavi
et al., 2019), which uses two stages of priors at different
latent resolutions to more efficiently learn global and local
features. The linear schedule worked better for 256× 256
images, so we used that for these results. Table 5 summa-
rizes our results. For VQ-VAE-2, we use the FIDs reported
in (Ravuri & Vinyals, 2019). Diffusion models still obtain
the best FIDs for a likelihood-based model, and close the
gap to GANs considerably.

MODEL FID
VQ-VAE-2 ((Razavi et al., 2019), two-stage) 38.1
Improved Diffusion (ours, single-stage) 31.5
Improved Diffusion (ours, two-stage) 12.3
BigGAN (Brock et al., 2018) 7.7
BigGAN-deep (Brock et al., 2018) 7.0

Table 5. Sample quality comparison on class conditional Ima-
geNet 256 × 256. BigGAN FIDs are reported for the truncation
that results in the best FID.

Figure 12. Random samples from two-stage class conditional Im-
ageNet 256 × 256 model. On top are random samples from the
64 × 64 model (FID 2.92), whereas on bottom are the results after
upsampling them to 256 × 256 (FID 12.3). Each model uses 250
sampling steps.

Improved Denoising Diffusion Probabilistic Models 13

D. Combining Lhybrid and Lvlb Models

0 500 1000 1500 2000 2500 3000 3500 4000
diffusion step (t)

0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

L t
(θ

hy
br

id
)/L

t(θ
vl
b)

Figure 13. The ratio between VLB terms for each diffusion step of
θhybrid and θvlb. Values less than 1.0 indicate that θhybrid is ”better”
than θvlb for that timestep of the diffusion process.

Figure 14. Samples from θvlb and θhybrid, as well as an ensemble
produced by using θvlb for the first and last 100 diffusion steps. For
these samples, the seed was fixed, allowing a direct comparison
between models.

To understand the trade-off between Lhybrid and Lvlb, we
show in Figure 13 that the model resulting from Lvlb (re-
ferred to as θvlb) is better at the start and end of the diffusion
process, while the model resulting from Lhybrid (referred
to as θhybrid) is better throughout the middle of the diffu-
sion process. This suggests that θvlb is focusing more on
imperceptible details, hence the lower sample quality.

Given the above observation, we performed an experiment
on ImageNet 64 × 64 to combine the two models by con-
structing an ensemble that uses θhybrid for t ∈ [100, T −100)
and θvlb elsewhere. We found that this model achieved an
FID of 19.9 and an NLL of 3.52 bits/dim. This is only
slightly worse than θhybrid in terms of FID, while being bet-
ter than both models in terms of NLL.

E. Log-likelihood with Fewer Diffusion Steps

Lsimple (σ2
t = βt, mid-training)

Lsimple (σ2
t = βt, fully trained)

Lsimple (σ2
t = ̃βt, mid-training)

Lsimple (σ2
t = ̃βt, fully trained)

Lsimple (̃̃IM, mid-training)
Lsimple (̃̃IM, fully trained)
Lhybrid (ours, mid-training)
Lhybrid (ours, fully trained)

103

evaluation steps

3.6

3.7

3.8

3.9

4.0

4.1

4.2

NL
L
(b
its

/d
im

)

103

evaluation steps

3.0

3.2

3.4

3.6

3.8

4.0
NL

L
(b
its

/d
im

)

Figure 15. NLL versus number of evaluation steps, for models
trained on ImageNet 64 × 64 (top) and CIFAR-10 (bottom). All
models were trained with 4000 diffusion steps.

Figures 15 plots negative log-likelihood as a function of
number of sampling steps for both ImageNet 64× 64 and
CIFAR-10. In initial experiments, we found that although
constant striding did not significantly affect FID, it dras-
tically reduced log-likelihood. To address this, we use a
strided subset of timesteps as for FID, but we also include
every t from 1 to T/K. This requires T/K extra evaluation
steps, but greatly improves log-likelihood compared to the
uniformly strided schedule. We did not attempt to calculate
NLL using DDIM, since Song et al. (2020a) does not present
NLL results or a simple way of estimating likelihood under
DDIM.

Improved Denoising Diffusion Probabilistic Models 14

F. Overfitting on CIFAR-10

100 200 300 400 500
training iters (thousands)

3

4

5

6

7

8

9

FI
D

linear
cosine

100 200 300 400 500
training iters (thousands)

3.10

3.15

3.20

3.25

3.30

3.35

3.40

NL
L

linear (test)
linear (train)
cosine (test)
cosine (train)

Figure 16. FID (top) and NLL (bottom) over the course of training
for two CIFAR-10 models, both with dropout 0.1. The model
trained with the linear schedule learns more slowly, but does not
overfit as quickly. When too much overfitting occurs, we observed
overfitting artifacts similar to those from Salimans et al. (2017),
which is reflected by increasing FID.

On CIFAR-10, we noticed that all models overfit, but tended
to reach similar optimal FID at some point during training.
Holding dropout constant, we found that models trained
with our cosine schedule tended to reach optimal perfor-
mance (and then overfit) more quickly than those trained
with the linear schedule (Figure 16). In our experiments, we
corrected for this difference by using more dropout for our
cosine models than the linear models. We suspect that the
overfitting from the cosine schedule is either due to 1) less
noise in the cosine schedule providing less regularization,
or 2) the cosine schedule making optimization, and thus
overfitting, easier.

G. Early stopping for FID

200 400 600 800 1000 1200 1400
training iters (thousands)

5

6

7

8

9

10

FI
D

0.0, 0.99
0.0, 0.999
0.0, 0.9999
0.0, 0.99995
0.0, 0.99999
0.1, 0.99
0.1, 0.999
0.1, 0.9999
0.1, 0.99995
0.1, 0.99999
0.3, 0.99
0.3, 0.999
0.3, 0.9999
0.3, 0.99995
0.3, 0.99999
original best

Figure 17. A sweep of dropout and EMA hyperparameters on
class conditional ImageNet-64.

Like on CIFAR-10, we surprisingly observed overfitting
on class-conditional ImageNet 64× 64, despite it being a
much larger and more diverse dataset. The main observable
result of this overfitting was that FID started becoming
worse over the course of training. We initially tried a sweep
(Figure 17) over the EMA hyperparameter to make sure it
was well tuned, and found that 0.9999 and 0.99995 worked
best. We then tried runs with dropout 0.1 and 0.3, and
found that models with a small amount of dropout improved
the best attainable FID but took longer to get to the same
performance and still eventually overfit. We concluded that
the best way to train, given what we know, is to early stop
and instead increase model size if we want to use additional
training compute.

H. Samples with Varying Steps and
Objectives

Figures 18 through 23 show unconditional ImageNet 64×
64 samples as we reduce number of sampling steps for
an Lhybrid model with 4K diffusion steps trained for 1.5M
training iterations.

Figures 24 through 29 show unconditional CIFAR-10 sam-
ples as we reduce number of sampling steps for an Lhybrid
model with 4K diffusion steps trained for 500K training
iterations.

Figures 30 and 31 highlight the difference in sample quality
between models trained with Lhybrid and Lvlb.

Improved Denoising Diffusion Probabilistic Models 15

Figure 18. 50 sampling steps on unconditional ImageNet 64 × 64

Figure 19. 100 sampling steps on unconditional ImageNet 64× 64

Figure 20. 200 sampling steps on unconditional ImageNet 64× 64

Figure 21. 400 sampling steps on unconditional ImageNet 64× 64

Figure 22. 1000 sampling steps on unconditional ImageNet 64×64

Figure 23. 4K sampling steps on unconditional ImageNet 64×64.

Improved Denoising Diffusion Probabilistic Models 16

Figure 24. 50 sampling steps on unconditional CIFAR-10

Figure 25. 100 sampling steps on unconditional CIFAR-10

Figure 26. 200 sampling steps on unconditional CIFAR-10

Figure 27. 400 sampling steps on unconditional CIFAR-10

Figure 28. 1000 sampling steps on unconditional CIFAR-10

Figure 29. 4000 sampling steps on unconditional CIFAR-10

Improved Denoising Diffusion Probabilistic Models 17

Figure 30. Unconditional ImageNet 64 × 64 samples generated
from Lhybrid (top) and Lvlb (bottom) models using the exact same
random noise. Both models were trained for 1.5M iterations.

Figure 31. Unconditional CIFAR-10 samples generated from
Lhybrid (top) andLvlb (bottom) models using the exact same random
noise. Both models were trained for 500K iterations.

