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Abstract—Hyperspectral and multispectral image fusion aims
to fuse a low-spatial-resolution hyperspectral image (HSI) and a
high-spatial-resolution multispectral image to form a high-spatial-
resolution HSI. Motivated by the success of model- and deep
learning-based approaches, we propose a novel patch-aware deep
fusion approach for HSI by unfolding a subspace-based optimiza-
tion model, where moderate-sized patches are used in both training
and test phases. The goal of this approach is to make full use of
the information of patch under subspace representation, restrict
the scale and enhance the interpretability of the deep network,
thereby improving the fusion. First, a subspace-based fusion model
was built with two regularization terms to localize pixels and
extract texture. Then, the subspace-based fusion model was solved
by the alternating direction method of multipliers algorithm, and
the model was divided into one fidelity-based problem and two
regularization-based problems. Finally, a structured deep fusion
network was proposed by unfolding all steps of the algorithm as net-
work layers. Specifically, the fidelity-based problem was solved by a
gradient descent algorithm and implemented by a network. The two
regularization-based problems were described by proximal opera-
tors and learnt by two u-shaped architectures. Moreover, an aggre-
gation fusion technique was proposed to improve the performance
by averaging the fused images in all iterations and aggregating
the overlapping patches in the test phase. Experimental results,
conducted on both synthetic and real datasets, demonstrated the
effectiveness of the proposed approach.
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I. INTRODUCTION

AHYPERSPECTRAL image (HSI) can be regarded as a
3-D image that contains both spatial and spectral infor-

mation. For the spectral dimension, HSI is a concatenation of
images taken at different spectral bands, with its spectral range
covering hundreds of contiguous and narrow bands that span
the visible to infrared spectrum. The high spectral resolution of
HSIs allows development of applications, such as object detec-
tion [1], tracking [2], face recognition [3], [4], and land-cover
classification [5]–[8]. Due to the limitations of existing imaging
sensors, there is a critical tradeoff between spatial and spectral
resolutions [9]. HSIs are acquired with low spatial resolution
to ensure high spectral resolution. Conventional multispectral
images (MSIs) at much lower spectral resolution can be acquired
with higher spatial resolution. Therefore, combining a low-
spatial-resolution HSI (LR-HSI) and a high-spatial-resolution
MSI (HR-MSI) could be an economical solution to obtain a
high-spatial-resolution HSI (HR-HSI) [9]–[11].

The fusion of LR-HSI and HR-MSI, known as hyperspectral
and multispectral (HS/MS) image fusion, has attracted great
attention [9]–[11]. This problem can be regarded as an extension
of the Pansharpening problem that fuses a low-spatial-resolution
MSI with a high-spatial-resolution panchromatic image [12]–
[15]. Generally, HS/MS image fusion is more complex than
that of Pansharpening, and the conventional approaches pro-
posed for Pansharpening can be extended to solve HS/MS
image fusion. Related approaches can be divided into four
categories—component substitution [16], multiresolution anal-
ysis [17], model-based approaches [18]–[35], and deep learning-
based approaches [14], [36]–[55]. Among these categories,
model- and deep learning-based approaches have been most
active recently.

Model-based approaches usually build an optimization model
based on the dependence between the target image and the
two observed images. The goals are to design effective fidelity
terms and exploit efficient regularization terms to obtain the
desired result. These models are flexible, and the theory is
relatively complete. However, the entire process relies too much
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on human experience and there are many empirical parameters
that need to be tuned when using prior knowledge to build the
optimization model.

Deep learning-based approaches are data-driven and build
end-to-end networks to establish the mapping relationship of
HS/MS image fusion. These approaches are suitable to exploit
the relationship between the given and target data. Unlike the
model-based approaches, these approaches rarely consider prior
knowledge of the data and their network structures are usually
uninterpretable.

Building on the success of model- and deep learning-based ap-
proaches, we propose a patch-aware deep fusion network, called
SpfNet (i.e., subspace-level fusion network), for HSI by taking
advantage of the subspace representation1 and deep unfolding
technique [56]–[64]. First, to make each pixel aware of the pixels
around it, singular value decomposition (SVD) is performed
on each patch of LR-HSI and a subspace-based optimization
model for HS/MS image fusion is built with two regularization
terms2 representing pixel localization and texture extraction
introduced to enforce the desired result. Then, the subspace-
based model is solved by the alternating direction method of
multipliers (ADMM) algorithm and thereby decoupled into
three suboptimization problems, one fidelity-based problem and
two regularization-based problems. The fidelity-based problem,
accounting for spatial-level data fusion, is solved by a gradi-
ent descent algorithm, and the regularization-based problems,
accounting for pixel localization and texture extraction, are
described by proximal operators. Finally, a structured deep
network for HS/MS image fusion is constructed by unfolding the
iterative algorithm, where the basic calculations are represented
as network layers and the proximal operators are replaced by
two u-shaped architectures. Moreover, an aggregation fusion
technique is proposed to improve the quality of HS/MS image
fusion. Specifically, the fused images produced in all iterations
are convolved and averaged and the overlapping patches are
aggregated in the test phase.

Compared with existing HS/MS image fusion approaches, the
four innovative characteristics of SpfNet are the following.

1) An interpretable patch-aware deep fusion network is
formed by unfolding the subspace-based optimization
model. With the network’s interpretability, it is easy to
adjust the structure according to the physical meaning, and
some nonfunctional and redundant parts can be effectively
removed.

2) With subspace representation, the channels of input ten-
sors can be restricted to focus on injecting spatial informa-
tion. A further spectral-spatial fusion is performed to com-
pensate for the loss of information brought by SVD. And
it is done by a strategy of image averaging that convolves
and averages the fused images produced in all stages.

3) By performing SVD on patches, the coefficients of each
pixel can be aware of the full information of its patch. In

1In this work, subspace representation is manifested in each patch, which is
different from the existing methods that perform the decomposition on the entire
image.

2Both regularization terms are proposed for preserving spatial information,
with pixel localization for pixel-level information and texture extraction for
subpixel-level information.

the test phase, the test images are divided into overlapping
patches. The generated pixels that belong to different
patches will have different information, and one can make
full use of this kind of redundant information by aggre-
gating the overlapping patches.

4) When constructing the network, the fixed format of fidelity
terms is broken by a concatenation operator to provide
more flexibility, and twin U-nets are proposed for pixel
localization and texture extraction.

The rest of this article is organized as follows. Section II
briefly reviews related works on HS/MS image fusion. In
Section III, the proposed subspace-based optimization model
and its ADMM algorithm are introduced and SpfNet is
formed by unfolding the ADMM iterations. In Section IV, the
effectiveness of SpfNet is demonstrated through experiments on
three synthetic datasets and one real dataset. Finally, Section V
concludes this article.

II. RELATED WORK

In this section, we briefly review the model-based and deep
learning-based approaches to HS/MS image fusion.

A. Model-Based Approaches

Model-based approaches can be roughly divided into two
categories: nonfactorization-based and factorization-based ap-
proaches. Nonfactorization-based approaches recover the target
image entirely and exploit related prior knowledge to enforce
the desired result. For example, by a variational Pansharpening
model where a priori knowledge of piecewise smooth functions
is exploited to regularize the solution [18], or by solving the
original unified model by incorporating a sparse tensor rep-
resentation, where nonlocal similar patches are formulated as
tensors [19]. Factorization-based approaches mainly separate
the target image into two parts and regenerate it via the recovered
parts. The target solution usually has a lower degree of freedom
and the computational load is lighter than in nonfactorization-
based approaches. There are many strategies proposed for matrix
factorization, by making assumptions about the target image.
Examples are, that it can be sparsely represented by an over-
complete spectral dictionary and different priors can be used to
obtain the spectral dictionary and coefficients [20], [21], [27],
[34]; or that it can be represented linearly by pure spectral
signatures and the endmember and abundance matrices can
be recovered simultaneously [22]–[24]; or that it lives in a
low-dimensional subspace and the subspace-based optimization
problem can be solved by exploiting prior knowledge, such
as piecewise smooth functions [25], dictionary learning [26],
tensor multirank [28], truncated matrix decomposition [29],
and deep prior [30]; or that it separates the target image into
multiple parts by tensor decomposition and updates each part
iteratively [31]–[33].

B. Deep Learning-Based Approaches

Learning-based approaches often build a deep network to
describe the fusion process, and produce the target image by
feeding observed images into the network [11], [14], [36].
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Some approaches enhance the ability to fuse images in the
network structures, such as 3-D convolutional neural networks
(CNN) [38], residual networks [39], multiscale structures [40],
pyramid networks [41], attention networks [42], [43], cross-
mode information [44], dense networks [45], [46], adversar-
ial network [47], [48]. Others use detail information from
high-spatial-resolution conventional images to improve perfor-
mance [49]–[52], while some form a hybrid of model- and deep
learning-based approaches [53]–[55], [65], [66].

To enhance the interpretability of deep learning-based ap-
proaches, constructing a structured deep network by deep un-
folding of the iterative algorithm has been used [56]–[64], [67],
[68], and the iterative algorithms used include ADMM [58], [59],
[68], projected gradient descent [60], proximal gradient [61],
[67], half quadratic splitting [62], [63], and iterative shrinkage
thresholding [64]. Approaches to HS/MS image fusion include a
concise fusion model incorporating a linear representation of the
target image followed by a projected gradient method to solve
the model with a deep network constructed by unfolding the
corresponding iterative algorithm [61]; an iterative formula for
HS/MS image fusion according to an observation with detailed
compensation processes leading to construction of a structured
deep network by unfolding the iterative formula [69]; taking
the original unified optimization model with two fidelity terms
and one regularization term and splitting the model into three
suboptimization problems via a half quadratic splitting algo-
rithm then using a recursive residual network for the subproblem
associated with the regularization term and unfolding the two
subproblems associated with the fidelity terms into network
representations [63].

III. PROPOSED APPROACH

A. Subspace-Based Optimization Model

Given two images (i.e., moderate-sized patches) taken from
the same scene, a LR-HSI Y ∈ RNB×NwNh and a HR-MSI
Z ∈ RNb×NWNH , HS/MS image fusion aims to generate a HR-
HSI X ∈ RNB×NWNH , where NB and Nb (NB > Nb) are the
spectral band numbers,NW andNw (NW > Nw) are the spatial
widths, and NH and Nh (NH > Nh) are the spatial heights.
We assume that NW = rNw and NH = rNh, where r is the
resolution ratio. Some observation models are proposed for Y,
Z, and the desired X [70]. We use the models described as
follows:

Y = XB+EY (1)

Z = RX+EZ (2)

where B ∈ RNWNH×NwNh represents the spatial blur and
downsampling, R ∈ RNb×NB represents the spectral response
function of the multispectral imaging sensor, and EY and EZ

are the errors. X is obtained by solving

min
X

1

2
‖Y −XB‖2F +

α

2
‖Z−RX‖2F (3)

where ‖ · ‖F represents the Frobenius norm, andα > 0 balances
the two fidelity terms.

HSI normally has a large correlation between bands [22],
[25]. The NB-dimensional spectral vectors of X usually are
in a subspace of dimension much lower than NB . Therefore

X = AS (4)

whereA ∈ RNB×J (NB ≥ J) represents the basis matrix whose
J column vectors span the same subspace as the column vec-
tors of X, and S ∈ RJ×NWNH (NWNH ≥ J) represents the
coefficient matrix.

Equation (4) factors a matrix into two submatrices by either
linear spectral unmixing (e.g., vertex component analysis [71])
or SVD [25]. To guide network design, only SVD is feasible here,
since the order of the endmemebers extracted by linear spectral
unmixing is interchangeable, which would disrupt subsequent
predictions. Therefore, A is obtained by

[A,Σ,PT ] = svds(Y, J) (5)

where A and P ∈ RNwNh×J are column orthogonal matrices,
Σ ∈ RJ×J is a diagonal matrix containing the singular values,
and svds(·, J) is the truncated SVD function that keeps the J
largest singular values, i.e., Y ≈ AΣPT .

In deep learning-based fusion methods, the use of truncated
SVD has three advantages. It can reduce the channels of input
tensors, thus reducing computational load and storage require-
ments; it is a very common approach for denoising; and since the
computation of SVD is performed on Y entirely, the estimates
will normally bring extra information and global or nonlocal
modules may not be needed [72], [73].

By incorporating (4) into the fusion process, (3) becomes

min
S

1

2
‖Y −ASB‖2F +

α

2
‖Z−RAS‖2F . (6)

Problem (6) is still ill-posed, and cannot be solved for X and
regularization terms need to be imposed on S.

The coefficient S characterizes the spatial information of X,
and the column vectors of S correspond to those of X and so
locate every pixel ofX. To locate pixels and capture more texture
information, two regularization terms are used, and the final
optimization problem can be written as

min
S

1

2
‖Y −ASB‖2F +

α

2
‖Z−RAS‖2F + λlfl(S)

+ λtft(S) (7)

where λl > 0 and λt > 0 are the regularization parameters, and
fl(S) and ft(S) (see Section III-C) represent the regularization
functions that implement pixel localization and texture extrac-
tion.

B. Optimization Algorithm

The optimization problem (7) contains two fidelity terms and
two regularization terms. ADMM can be used to solve this
problem.3 These terms can be divided into three groups based

3ADMM is used to solve (7) due to it is convenient to solve the problems
with multiple regularization terms. Although other method, such as proximal
gradient, can be used to solve (7), it has to evaluate a complex proximal operator
consisting of two regularization terms, which increases the complexity of the
problem.
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on their functions: fidelity terms fy(S) and fz(S), regulariza-
tion term fl(S) and regularization term ft(S), where fy(S) =
(1/2)‖Y −ASB‖2F and fz(S) = (1/2)‖Z−RAS‖2F . There-
fore, with two variables U,Π ∈ RJ×NWNH , the optimization
problem (7) can be rewritten as

min
S,U,V

fy(S) + αfz(S) + λlfl(U) + λtft(Π)

s.t. U = S,Π = S. (8)

The augmented Lagrangian function of (8) can be written as

L(S,U,Π,V,Λ) = fy(S) + αfz(S) + λlfl(U) + λtft(Π)

+
μ

2
‖S−U−V‖2F +

μ

2
‖S−Π−Λ‖2F

(9)

where V,Λ ∈ RJ×NWNH are auxiliary variables and μ > 0 is
the penalty parameter. The iteration procedures to solve (7)
are given in detail below, and the entire process is shown in
Algorithm 1.

1) Solving Subproblem S: Optimizing L with respect to S
can be written as

min
S

fy(S) + αfz(S) + μgl(S) + μgt(S) (10)

where gl(S) = (1/2)‖S−U(t−1) −V(t−1)‖2F , gt(S) =
(1/2)‖S−Π(t−1) −Λ(t−1)‖2F , and t = 1, . . . , T represents
the tth ADMM iteration. Although problem (10) is convex
and can be solved by a Sylvester equation [74], its solution is
difficult to implement by a network. Equation (10) is solved by
the gradient descent algorithm as

S
(t−1)
k = S

(t−1)
k−1 − η{∇Sfy(S

(t−1)
k−1 ) + α∇Sfz(S

(t−1)
k−1 )

+ μ∇Sgl(S
(t−1)
k−1 ) + μ∇Sgt(S

(t−1)
k−1 )} (11)

where

∇Sfy(S
(t−1)
k−1 ) = AT (AS

(t−1)
k−1 B−Y)BT (12)

∇Sfz(S
(t−1)
k−1 ) = (RA)T (RAS

(t−1)
k−1 − Z) (13)

∇Sgl(S
(t−1)
k−1 ) = S

(t−1)
k−1 −U(t−1) −V(t−1) (14)

∇Sgt(S
(t−1)
k−1 ) = S

(t−1)
k−1 −Π(t−1) −Λ(t−1) (15)

η > 0 is the step, k = 1, . . . ,K represents the kth subiteration,
S
(t−1)
0 = S(t−1) and S(t) = S

(t−1)
K .

2) Solving Subproblem U: Optimizing L with respect to U
can be written as

min
U

1

2
‖U− (S(t) −V(t−1))‖2F +

λl

μ
fl(U). (16)

The solution of (16) can be achieved by a proximal operator
proxfl(·, ·), i.e.,

U(t) = proxfl(S
(t) −V(t−1), λl/μ). (17)

3) Solving Subproblem Π: Optimizing L with respect to Π
can be written as

min
Π

1

2
‖Π− (S(t) −Λ(t−1))‖2F +

λd

μ
fd(Π). (18)

Algorithm 1: ADMM for Solving (7) Using the Lagrangian
Formulation (9).

1: Input: LR-HSI Y, HR-MSI Z, B, R.
2: Calculate A by (5).
3: Initialize S(0), U(0), V(0), Π(0), Λ(0) by zero matrix

0.
4: for t = 1 : T do
5: for k = 1 : K do
6: Update S

(t)
k by (11)–(15)

7: end for
8: Update U by (17)
9: Update Π by (19)

10: Update V by (20)
11: Update Λ by (21)
12: end for
13: Output: The coefficient matrix S.

Similar to (16), the solution of (18) is achieved by a proximal
operator proxfd(·, ·), i.e.,

Π(t) = proxfd(S
(t) −Λ(t−1), λd/μ). (19)

4) Updating Multipliers: The multipliers associated with L
are updated as

V(t) = V(t−1) − (S(t) −U(t)) (20)

Λ(t) = Λ(t−1) − (S(t) −Π(t)). (21)

C. Deep Fusion Net

Based on Algorithm 1, we build a deep HS/MS image fusion
network by unfolding all steps of the algorithm as network
layers. The proposed network is mainly a structure of T stages,
corresponding to T ADMM iterations (see Fig. 1). Each stage
contains three modules (the S, U, and Π modules) and two
computation units (the V and Λ units), which represent the
five procedures of one ADMM iteration. It takes Y, Z, A,
and the outputs of previous stage, as inputs, and outputs five
updated variables to be the inputs of next stage. The final X
is obtained by convolving and then averaging the fused images
X(t) produced in all stages. This process is called aggregation
fusion. The techniques adopted for the proposed approach will
be described in more detail.

1) SModule: Fig. 2 shows the structure of theSmodule. The
module is a structure of K stages, corresponding to K iterations
of the gradient descent algorithm. Equation (12) can be expanded
as

∇Sfy(S
(t−1)
k−1 ) = (S

(t−1)
k−1 B−ATY)BT (22)

where the identity matrix ATA is omitted. In (22), B is per-
formed using a 2-D strided convolution followed by a Leaky
ReLU, since B represents the spatial blurring and downsam-
pling operator. Similarly, BT is performed using a 2-D strided
deconvolution. To fit the resolution ratio, the stride is fixed to r
and the kernel size is set as 1.5 r × 1.5 r. To reduce parameters
and keep the flexibility of model, the parameters of the pipeline
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Fig. 1. Overall structure of the proposed network.

Fig. 2. Structure of the coefficient matrix S module.

(22) are only shared in ADMM iterations. Equation (13) can be
rewritten as

∇Sfz(S
(t−1)
k−1 ) = ĀT ĀS

(t−1)
k−1 − ĀTZ (23)

where Ā = RA. In (23), R is a parameter matrix learned by
the network, which is variable in different ADMM iterations and
unchanged in the gradient descent process. Equations (14) and
(15) can be implemented directly by the network.

In (11), a linear combination of four gradient functions is
calculated and followed by gradient descent. The linear com-
bination is derived from the fixed format of (3). To break the
fixed format and provide more flexibility, the linear combina-
tion, and step η, are implemented by concatenating the four
gradient functions and performing a 3× 3 2-D convolution and
a Leaky ReLU. Then, one gradient descent can be performed by
a subtraction operation.

2) U and Π Modules: Equations (17) and (19) are two prox-
imal operators. Equation (17) is derived from the regularization
term fl(S) for pixel localization. A U-net architecture [75]
is used to learn this operator, with residual connections [76]
introduced to improve performance. Equation (19) is derived
from the regularization term ft(S) for texture extraction, which
can be treated as the localization of subpixels, and thus a reversed
U-net architecture is used to learn this operator. Fig. 3 shows the
structures of the U and Π modules that appear as twin U-nets.

Fig. 3. Structures of the U and Π modules. Left: U-net U. Right: reversed
U-net Π.

To simplify the model, the number of feature channels is kept
unchanged in both modules. For the number of 2-times sampling
operators, it is set as log2 r for the U module (Fig. 3 shows the
structure when r = 8) and it is fixed to 1 for the Π module. The
computation units of the auxiliary variables of U and Π, V, and
Λ, can be implemented directly.

BothU andΠmodules are implemented for spatial injection,
but for different purposes. U-net is a basic architecture for
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many image segmentation tasks, which enables precise local-
ization [75]. As shown in [77], U-net architecture can also be
utilized to capture the main structure of images. Implemented
by a U-net, U module is designed to capture the spatial infor-
mation ranging from the pixel to region level. Image texture can
be seen as a subpixel-level structure, which is also important
for spatial enhancement. Inspired by subpixel mapping [78],
texture extraction can be treated as the localization of subpixels.
Reversed U-net that upsamples the image gradually can achieve
this purpose. Implemented by a reversed U-net, Π module is
designed to capture the subpixel-level information and can be
seen as a complement to U module.

3) Aggregation Fusion: After the pipelines of the ADMM
iterations, the desired X can be produced by a straightforward
use of the finalS(T ), along withA. However, the subspace-based
fusion model (7) mainly focuses on the injection of spatial
information rather than spectral information. Although the basis
matrix A describes the spectral information of HR-HSI, it is
insufficient to obtain the desired result, since there may be the
loss of critical information or the inconsistency between spec-
tral and spatial information after network inference. A further
spectral-spatial fusion must be performed on the entire image. As
image averaging can reduce the zero-mean noise in digital image
processing if multiple images are taken independently, this will
be suitable for the fused images produced at the different stages.
The output of the proposed network can be written as

X̄ =
1

T

T∑

t=1

⊗3,1(X
(t)) (24)

whereX(t) = AS(t) and⊗3,1 is a 2-D convolution operator with
a kernel size of 3× 3 and stride of 1. To measure the difference
between the output X̄ and the target X, the l1-norm is used
because it is more robust to outliers than the l2-norm. Then, the
final objective function can be written as

min
Θ

‖X− X̄‖1
s.t. X̄ = SpfNetΘ(Y,Z,A) (25)

where Θ-parameterized SpfNetΘ(·) represents the proposed
network. Aggregation fusion is also required in the test phase.
Existing deep learning-based HS/MS image fusion approaches
input the entire observation images to produce the fused image
in the test phase, while small patches are used in the training
and validation phases. This simplifies the calculation, but the
model of the training phase and the accuracy of the validation
phase will not match those of the test phase. Moreover, it is
inappropriate to fuse the images entirely due to the significant
spectral differences of distant locations, and it is also not suitable
for online processing. In the proposed approach, the test images
are cut (with a stride ofL) into several overlapping patches of the
same size as those used for training,4 and the desired HR-HSI
is obtained by tiling and summation over all generated patches.

4The patch sizes are the same in the training and test phases, but the strides
are not necessarily the same. In the training phase the stride controls the number
of training samples, while in the test phase the stride affects the quality as shown
in Section IV-C1.

There are two advantages to this test strategy: the training and
test phases are consistent so the accuracy of the validation set can
more precisely reflect that of the testset, and, with the assistance
of SVD, the generated pixels that belong to different patches will
have different information, so the performance of the network
can be improved by the aggregation of patches.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, experiments on a synthetic dataset are con-
ducted to verify the mechanism of SpfNet quantitatively, and
then its performance is evaluated on synthetic and real datasets.
All datasets were scaled to the range [0, 1]. The quality
of the fused images in the synthetic datasets was assessed
with five quantitative indices, root-mean-squared error (rmse),
peak signal-noise-ratio (PSNR), spectral angle mapper (SAM),5

structural similarity index (SSIM), and relative dimensionless
global error in synthesis (ERGAS) [9], [10].

A. Synthetic Datasets

Three real-life HSI datasets, CAVE [79], Harvard [80], and
Pavia Center (PaviaC)6 were manipulated to use as synthetic
reference images for the simulation experiments.

1) The CAVE dataset consists of 32 indoor HSIs of 512×
512 pixels, which contain 31 spectral bands acquired at
wavelength intervals of 10nm in the range of 0.4–0.7μm.
The first 20 HSIs were used for training, and the remainder
for testing.

2) The Harvard dataset contains 50 HSIs of indoor and out-
door scenes under daylight illumination. Each HSI has
1392× 1040 pixels and 31 spectral bands. The spectral
range covers 0.42–0.72 μm with a wavelength interval
10 nm. The first 30 HSIs were used for training, and the
remainder for testing.

3) The PaviaC dataset is an urban image acquired by the
reflective optics system imaging spectrometer (ROSIS),
with a spectral range of 0.43 to 0.86 μm. The ROSIS
sensor gives 115 spectral bands and 103 remained after re-
moval of noisy bands. The size of the HSI is 1096× 1096
pixels, but the central area contains no information and has
to be discarded, resulting in two subimages of 1096× 223
and 1096× 492 pixels. The bottom-left 512× 216-pixel
part of the image was selected as the test image, and the
remaining parts were used for training.

For each reference image, two observation images, LR-HSI
and HR-MSI, were generated according to Wald’s protocol [81].
To generate the LR-HSI, the reference image is blurred and
down-sampled by a factor of 8 (r = 8) in each direction. A
Gaussian blur of 15× 15 pixels, with a mean of 0 and a standard
deviation of 3.40, was applied to each band of the reference
image. To generate the HR-MSI, the band number NB of the
reference image X ∈ RNB×NWNH is reduced to Nb by left
multiplying a spectral response function R ∈ RNb×NB . For the

5We compute the SAM between two pixels in degree.
6[Online]. Available: http://www.ehu.eus/ccwintco/index.php/Hyperspectral

_Remote_Sensing_Scenes#Pavia_Centre_scene

http://www.ehu.eus/ccwintco/index.php/Hyperspectralpenalty -@M _Remote_Sensing_Scenes#Pavia_Centre_scene
http://www.ehu.eus/ccwintco/index.php/Hyperspectralpenalty -@M _Remote_Sensing_Scenes#Pavia_Centre_scene
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first two datasets, R was derived from the spectral response
of a Nikon D700 camera.7 For the last dataset, R was derived
from the spectral response of the IKONOS satellite, according
to the spectral response profiles of the RGB and NIR bands.
Specifically, the HR-MSI has three bands in the CAVE and
Harvard datasets and four bands in the PaviaC dataset. The
above simulation process of generating the LR-HSI and HR-MSI
cannot match their degradation process well and there may be
ubiquitous noise or error, due to the complexity of real scenarios.
To better simulate the degradation process, moderate Gaussian
noise was added to the LR-HSI (SNR= 30 dB) and the HR-MSI
(SNR = 40 dB).

To prepare samples for training, 64 × 64 pixel overlapping
patches from the reference images were extracted as the desired
HR-HSIs. The stride sizes of extracted patches were 16 for the
CAVE dataset, 48 for the Harvard dataset, and 8 for the PaviaC
dataset. Then the utilized LR-HSIs and HR-MSIs are of sizes
8 × 8 and 64 × 64 pixels, respectively. About 20% of these
extracted patches were used for validation.

B. Comparison Methods and Implementation Details

Seven approaches, which can be divided into model- and deep
learning-based approaches, were compared to evaluate the per-
formance of SpfNet.8 The model-based approaches are coupled
spectral unmixing (CSU9) [23], HySure10 [25], NPTSR11 [19],
and CNNFUS12 [30]. The deep learning-based approaches are
PNN13 [39], MHFnet14 [61], and DBIN15 [69], and also SpfNet.
The free parameters of the model-based approaches were tuned
to be optimal with the test datasets and the default parameters
were used for the deep learning-based approaches. Specifically,
leaving the default parameters unchanged, in CSU the number
of endmembers was set as 30 for all datasets; in HySure the
dimension of subspace was set as 10 for all datasets; in NPTSR
the sizes of patch and step were fixed to 32× 32 and 16, λ and β
were set as 10−2 and 102 for the CAVE dataset, 10−3 and 102 for
the Harvard dataset, and 102 and 104 for the PaviaC dataset; in
CNNFUS the parameters were set as λ = 10−4, T = 25 for all
datasets and as L = 10, 5, 5 for the CAVE, Harvard and PaviaC
datasets, respectively. For SpfNet, unless otherwise specified,
the default parameters were used, that is, the number of ADMM
iterations, T , was fixed to 5, the number of gradient descent iter-
ations, K, was fixed to 3, and the column number, J , of the basis
matrixAwas set asmin{31, NB}. The model-based approaches
were performed using MATLAB, and the deep networks were
implemented by the TensorFlow framework with Python. All
deep learning-based approaches used the same training and valid

7[Online]. Available: https://maxmax.com/spectral_response.htm
8The code will be available on https://github.com/liuofficial
9[Online]. Available: https://github.com/lanha/SupResPALM
10[Online]. Available: https://github.com/alfaiate/HySure
11The code is provided by Dr. Xu
12[Online]. Available: https://github.com/renweidian/CNN-FUS
13[Online]. Available: https://github.com/sergiovitale/pansharpening-cnn-

python-version
14[Online]. Available: https://github.com/XieQi2015/MHF-net
15[Online]. Available: https://github.com/wwhappylife/Deep-Blind-Hyper

spectral-Image-Fusion

TABLE I
QUALITY MEASURES USING DIFFERENT SUBSPACE DIMENSIONS

sets, and an Adam optimizer was used to train the networks with
a batch size of 32. For MHFnet, it was trained for 100 epochs
with learning rate being 10−4. For PNN, DBIN and SpfNet, they
were trained for 200 epochs, and the learning rate was initialized
at 10−3 and gradually decayed to 5× 10−4, 10−4 and 5× 10−5.
Fig. 4 shows the training and valid losses as a function of epochs
for the proposed SpfNet. As the number of epochs increases, the
two losses decrease consistently.

C. Parameter Analysis and Ablation Study

In this section, we will use a set of experiments to show the
influence of the key parameters, the patch size, the test stride
L, the subspace dimension J and the ADMM stage T . We
also present the efficiency of SpfNet via an ablation study. The
experiments keep the default parameters and structures, except
for the parameter or structure being assessed.

1) Influence of the Patch Size and Test Stride L: The use of
moderate-sized test patches is a part of the aggregation fusion
technique (Section III-C3). This experiment showed how the
patch size and test stride affect the performance of SpfNet on
the CAVE dataset. The quality measures PSNR and SAM are
illustrated in Fig. 5. It can be seen that moderate-sized 64× 64
patch is better than the others. For all patch sizes, performance
was best at a stride of 8, and became steadily worse as the stride
increased or decreased. To balance accuracy and computational
overhead, the patch size was fixed to 64× 64, and the test stride
L was set as 16 for the CAVE dataset and as 16 and 4 for the
Harvard and PaviaC datasets, respectively.

2) Influence of J: The subspace dimension J determines
the number of input channels for all modules, giving the scale
of the network. LR-HSI patches of 8× 8 were used in the
experiments. Thus, the dimension cannot be greater than 64,
regardless of the number of spectral bands. The CAVE and
Harvard datasets have 31 spectral bands, and thus, J cannot be
greater than 31. The PaviaC dataset uses 103 spectral bands,
and thus, J cannot be greater than 64. Table I shows the results
as a function of J for the CAVE and PaviaC datasets. In this
table and the following, the best values are marked in bold.
Performance on the CAVE dataset, as judged by the quality

https://maxmax.com/spectral_response.htm
https://github.com/liuofficial
https://github.com/lanha/SupResPALM
https://github.com/alfaiate/HySure
https://github.com/renweidian/CNN-FUS
https://github.com/sergiovitale/pansharpening-cnn-python-version
https://github.com/sergiovitale/pansharpening-cnn-python-version
https://github.com/XieQi2015/MHF-net
https://github.com/wwhappylife/Deep-Blind-Hyperpenalty -@M spectral-Image-Fusion
https://github.com/wwhappylife/Deep-Blind-Hyperpenalty -@M spectral-Image-Fusion
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Fig. 4. Training and valid losses as a function of epochs. (a) CAVE dataset. (b) Harvard dataset. (c) PaviaC dataset.

Fig. 5. Quality measures as a function of the stride L using different patch
sizes. (a) PSNR. (b) SAM.

TABLE II
QUALITY MEASURES FOR THE CAVE DATASET USING DIFFERENT STAGES

measures, increases as the dimension increases and is best at
full rank; while on the PaviaC dataset, it is best at 30. Without
loss of generality, J was set as min{31, NB} for all datasets.

3) Influence of T : The ADMM stage T controls the depth of
the network. For the iterative algorithm, a large T is beneficial.
This experiment showed how the stage affects the performance
of SpfNet on the CAVE dataset. Performance, on all quality
measures, increases as the stage increases to five and then
slightly decreases (see Table II). In the experiments, the ADMM
stage T was fixed as five for all datasets.

4) Ablation Study: Subspace representation, coefficient ma-
trix S module, U-net U module, reversed U-net Π module
and aggregation fusion are parts of the design of the network
in SpfNet. The contribution of each technique to the network
was assessed on the quality measures by removing it from the
network. Specifically, seven different structures are investigated.
“SVD” denotes the proposed SpfNet without performing SVD
on patches. “U,” “Π,” and “U+Π” denote the proposed SpfNet
without using the corresponding modules. “S-lin” refers to S
module using a linear combination of the four gradient functions
in (11). “AF-average” refers to the HR-HSIX directly computed

TABLE III
ABLATION STUDY USING DIFFERENT STRUCTURES WHEN APPLIED TO THE

CAVE DATASET

using the coefficient matrix S(T ) and the basis matrix A rather
than image averaging. “AF-patch” is the way in which the test
images are fused entirely rather than patch by patch. The com-
plete SpfNet performs better than all models with a component
removed indicating that all techniques contribute positively to
the final result (see Table III).

D. Results of Experiments on Synthetic Datasets

The seven approaches mentioned in Section IV-B were com-
pared quantitatively and visually with SpfNet, based on the
quality measures, in four groups. The first contains the four
model-based methods, CSU, HySure, NPTSR, and CNNFUS
using the exact spatial blur and spectral response (B and R)
while the second group is the same methods (indicated by a suffix
“-B,” for a blind group) whereB andRwere estimated as in [25].
The third group contains the three deep learning-based methods,
PNN, MHFnet, and DBIN, indicated with a suffix “-S” to show
that small patches were used in the test phase, as in SpfNet.
The fourth group is the four deep learning-based methods,
PNN, MHFnet, DBIN, and SpfNet, under their standard test
conditions.

On the CAVE dataset, SpfNet performed the best followed
by DBIN and MHFnet (see Table IV). Model-based methods
were greatly influenced by B and R. The use of small test
patches gave worse results for PNN, MHFnet, and DBIN. For
blind fusion, the deep-learning methods performed better than
the model-based methods. Fig. 6 illustrates the fusion results
for the image ‘thread_spools’ as RGB images, according to the
spectral response of a Nikon D700 camera for the model based
methods with estimatedB andR and the standard deep learning
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Fig. 6. RGB images (with a meaningful region marked and zoomed in 3 times for easy observation) and error maps (at band 15) of HS/MS image fusion results
when applied to the CAVE dataset. (a) Reference image. (b) HR-MSI. (c) LR-HSI. (d) CSU-B. (e) HySure-B. (f) NPTSR-B. (g) CNNFUS-B. (h) PNN. (i) MHFnet.
(j) DBIN. (k) SpfNet.

TABLE IV
QUALITY MEASURES FOR THE CAVE DATASET USING DIFFERENT METHODS

methods. The reference image, the HR-MSI and the LR-HSI are
also presented. SpfNet performs well, and spectral distortion is
not evident for the methods tested. Fig. 9(a) shows PSNR as a
function of the spectral band for the methods used in Fig. 6. For
almost all bands, SpfNet performs best followed by MHFnet.
The SAMs between the reference image and the fusion results
for each pixel using these methods, are shown in Fig. 10(a),
with the pixels sorted by ascending error. SpfNet outperforms
the other methods at the pixel level.

For the Harvard dataset, for all quality measures, SpfNet
performed the best followed by DBIN (see Table V). The
model-based methods performed differently between the blind
and nonblind groups. MHFnet was sensitive to the size of test
images while PNN and DBIN were not. Fig. 7 shows the original
‘imge6’ images and the fusion results of the eight blind methods

TABLE V
QUALITY MEASURES FOR THE HARVARD DATASET USING DIFFERENT

METHODS

as RGB images. There is no obvious spectral distortion for all
methods. Fig. 9(b) gives PSNR as a function of the spectral band
for these blind methods. SpfNet, DBIN, and MHFnet achieved
high results in most bands. Fig. 10(b) gives the SAMs for each
pixel between the reference image and the fusion. SpfNet obtains
consistently good results.

On the PaviaC dataset, under the five quality measures,
SpfNet, MHFnet-S, and DBIN-S achieved high results with no
significant differences among them (see Table VI). The perfor-
mance of the model-based methods degrades substantially in the
blind scenario. When using small test patches, the performance
of MHFnet and DBIN is improved, while there is no significant
difference for PNN. RGB images of the reference HR-HSI, the
HR-MSI, the LR-HSI, and the fusion results of the eight blind
methods, according to the spectral response of the IKONOS
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Fig. 7. RGB images (with a meaningful region marked and zoomed in 3 times for easy observation) and error maps (at band 15) of HS/MS image fusion
results when applied to the Harvard dataset. (a) Reference image. (b) HR-MSI. (c) LR-HSI. (d) CSU-B. (e) HySure-B. (f) NPTSR-B. (g) CNNFUS-B. (h) PNN.
(i) MHFnet. (j) DBIN. (k) SpfNet.

TABLE VI
QUALITY MEASURES FOR THE PAVIAC DATASET USING DIFFERENT METHODS

satellite, are given in Fig. 8. No method exhibits an obvious
spectral distortion. PSNR and SAM, as functions of the spectral
band and by pixel sorted on error, are shown in Figs. 9(c) and
10(c), respectively. SpfNet, DBIN, and MHFnet consistently
outperform the other methods.

E. Computational Efficiency

The experiments in Section IV were carried out using a
desktop computer with an Intel Core i9-7900X CPU (3.3 GHz,
10 cores), a GeForce GTX 2080Ti GPU, and 64-GB memory.
Table VII summarizes the test times of the compared methods
mentioned in Section IV-B and the training times of the re-
lated deep learning-based methods, and the number of trainable
parameters for each deep learning-based method is reported
in Table VIII. PNN is the fastest method in most cases, and

TABLE VII
TRAINING AND TEST TIMES OF EACH METHOD

TABLE VIII
NUMBER OF TRAINABLE PARAMETERS (IN MILLIONS)

CNNFUS is the fastest one among the model-based methods.
The proposed SpfNet is slightly slower than the other deep
learning-based methods, since it divides the test images into
overlapping patches for fusion.

F. Results of Experiments on the Real Dataset

The World View-2 (WV2) dataset16 was used to evaluate
SpfNet on real data. This dataset consists of a LR-HSI of 419 ×
658 × 8 and a high-spatial-resolution RGB (HR-RGB) image
of 1676 × 2632 × 3, with a resolution ratio of 4. Take the
HR-RGB image as a reference, the bottom-right 512 × 512
pixel image was taken as the test image and the remaining

16[Online]. Available: https://www.l3harrisgeospatial.com/Data-Imagery/
Satellite-Imagery/High-Resolution/WorldView-2

https://www.l3harrisgeospatial.com/Data-Imagery/Satellite-Imagery/High-Resolution/WorldView-2
https://www.l3harrisgeospatial.com/Data-Imagery/Satellite-Imagery/High-Resolution/WorldView-2


1034 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 8. RGB images (with a meaningful region marked and zoomed in 3 times for easy observation) and error maps (at band 30) of HS/MS image fusion results
when applied to the PaviaC dataset. (a) Reference image. (b) HR-MSI. (c) LR-HSI. (d) CSU-B. (e) HySure-B. (f) NPTSR-B. (g) CNNFUS-B. (h) PNN. (i) MHFnet.
(j) DBIN. (k) SpfNet.

Fig. 9. PSNR as a function of spectral band. (a) CAVE dataset. (b) Harvard dataset. (c) PaviaC dataset.
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Fig. 10. SAM (plotted in a log10(·) scale) as a function of sorted pixel. (a) CAVE dataset. (b) Harvard dataset. (c) PaviaC dataset.

Fig. 11. RGB images (with a meaningful region marked and zoomed in 4 times for easy observation) of HS/MS image fusion results when applied to the WV2
dataset. (a) HR-RGB image. (b) LR-HSI. (c) CSU. (d) HySure. (e) NPTSR. (f) CNNFUS. (g) PNN. (h) MHFnet. (i) DBIN. (j) SpfNet.

part was used for training. Training samples were generated by
Wald’s protocol, and the input HR-HSI, LR-HSI, and HR-MSI
samples are of sizes 32 × 32 × 8, 8 × 8 × 8, and 32 × 32 × 3,
respectively. The test stride L was fixed to 4. The spatial blur B
and the spectral response R of the sensor used in the methods
were estimated as in [25]. RGB images of the real dataset and
the fusion results of the methods are given in Fig. 11. Visually,
it can be see that PNN, MHFnet, DBIN and SpfNet give the
good color and brightness results, and the result of the proposed
SpfNet is much closer to the HR-RGB image.

V. CONCLUSION

This article proposed an interpretable patch-aware deep net-
work for HS/MS image fusion by unfolding the subspace-based
optimization model. A subspace-based model was built for
HS/MS image fusion by performing SVD on each patch of
LR-HSI, and two regularization terms were imposed on the
model to enforce the target HR-HSI. One regularization term
was proposed for pixel localization, and one to extract texture.
The complex fusion model was solved by the ADMM algorithm

and decoupled into three suboptimization problems. One is asso-
ciated with the two fidelity terms, which consider spatial-level
data fusion and were solved by a gradient descent algorithm.
The other two are associated with regularization terms that deal
with the injection of detail and were described by proximal
operators. Through a deep unfolding technique, the suboptimiza-
tion problems were represented as three modules, S, U and Π.
The S-module implements the basic calculations of the iterative
algorithm of the fidelity-based problem, where a linear combi-
nation of the gradient functions are replaced by a concatenation
operator to provide more flexibility. A u-shaped architecture is
used by the U-module to learn the related proximal operator
and the Π-module uses a reversed u-shaped architecture. A
structured deep fusion network was obtained by repeating all
steps of the algorithm. To improve the fusion performance, a
technique called aggregation fusion was proposed. Specifically,
to achieve the spectral-spatial fusion, the strategy of image
averaging was adopted by convolving and averaging the fused
images in all stages of the network. To make full use of redundant
information, test images were divided into overlapping patches
as input to the network and then aggregated into images. SpfNet
has been experimentally tested using three synthetic datasets
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and one real dataset. The experimental results demonstrated its
effectiveness.

Although the results obtained by the proposed approach are
encouraging, there is still large room for further improvements.
First, SVD is performed on each patch, and it is better to
perform tensor decomposition on patches so that the higher order
information of patches can be explored. Second, S-module uses
concatenation to relax the fixed format of (3), and a well-defined
observation model is more preferable. Third, the structure of
the Π-module needs to be elaborated and its effectiveness in
other scenarios needs to be verified. Fourth, real data have no
label information, and it is necessary to extend the network
to deal with such a situation that only noisy training samples
are available. We will pursue these enhancements in our future
research.
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