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PanDiff: A Novel Pansharpening Method Based on
Denoising Diffusion Probabilistic Model

Qingyan Meng , Wenxu Shi , Sijia Li, and Linlin Zhang

Abstract— Pansharpening is a crucial image processing tech-
nique for numerous remote sensing downstream tasks, aiming to
recover high spatial resolution multispectral images by fusing
high spatial resolution panchromatic (PAN) images and low
spatial resolution multispectral (LRMS) images. Most current
mainstream pansharpening fusion frameworks directly learn the
mapping relationships from PAN and LRMS images to high-
resolution multispectral (HRMS) images by extracting key fea-
tures. However, we propose a novel pansharpening method based
on the denoising diffusion probabilistic model (DDPM) called
PanDiff, which learns the data distribution of the difference maps
(DMs) between HRMS and interpolated MS (IMS) images from
a new perspective. Specifically, PanDiff decomposes the complex
fusion process of PAN and LRMS images into a multistep Markov
process, and the U-Net is employed to reconstruct each step
of the process from random Gaussian noise. Notably, the PAN
and LRMS images serve as the injected conditions to guide the
U-Net in PanDiff, rather than being the fusion objects as in
other pansharpening methods. Furthermore, we propose a modal
intercalibration module (MIM) to enhance the guidance effect of
the PAN and LRMS images. The experiments are conducted
on a freely available benchmark dataset, including GaoFen-2,
QuickBird, and WorldView-3 images. The experimental results
from the fusion and generalization tests effectively demonstrate
the outstanding fusion performance and high robustness of
PanDiff. The results of the proposed method performed on
various scenes are shown. In addition, the ablation experiments
confirm the rationale behind PanDiff’s construction.

Index Terms— Deep learning (DL), denoising diffusion prob-
abilistic model (DDPM), image fusion, pansharpening, remote
sensing.

NOMENCLATURE
P ∈ RH×W Panchromatic (PAN) image.
MS ∈ R H

r ×
W
r ×C Multispectral image (LRMS).

M̂S ∈ RH×W×C Pansharpened image (HRMS).
M̃S ∈ RH×W×C Interpolated multispectral image (IMS).
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GT ∈ RH×W×C Ground truth or ideal HRMS.
1MS ∈ RH×W×C Difference map (DM),

1MS = GT− M̃S.
r Spatial resolution ratio.
q(· | ·) Forward (diffusion) step.
pθ (· | ·) Reverse (denoised) step with network θ .
t Discrete timesteps t on the range of

[0, T], where T is the total number.
x0 Prior distribution of data; in this

article, it represents samples from
GT− M̃S.

xT Random noise after diffusion.
xt Diffused data (latent state) at step t.

I. INTRODUCTION

REMOTE sensing images with high spatial and spectral
resolution are required in a wide variety of fields, ranging

from scene classification [1], [2], semantic segmentation [3],
[4], comprehensive land use mapping [5], urban fine 3-D
reconstruction [6], [7], environmental monitoring [8], and
urban planning [9]. Unfortunately, due to physical limitations
in current sensor technology, it is challenging for remote
sensing data acquired by a single satellite sensor to meet this
high-quality standard. To address this issue, pansharpening
algorithms have been developed to fuse high spatial resolution
panchromatic (PAN) images, which possess high spatial reso-
lution but lack spectral information, with low spatial resolution
multispectral (LRMS) images that capture spectral information
across multiple bands to generate high-resolution multispectral
(HRMS) images. Thus, preprocessing techniques, including
pansharpening, are required in the field of remote sensing.

Numerous pansharpening methods have been developed,
which can be broadly categorized into four groups based
on their underlying principles: 1) component substitution
(CS)-based approaches; 2) multiresolution analysis (MRA)-
based approaches; 3) variational optimization (VO)-based
approaches; and 4) deep learning (DL)-based approaches.
Categories 1)–3) represent the traditional pansharpening
approaches.

The CS-based pansharpening approaches aim to inject
spatial information by projecting LRMS images into a new
feature space, stripping LRMS images of their structural
components, and replacing them with the corresponding com-
ponents of PAN images. The main methods include the prin-
cipal component transform (PCA)-based method [10], [11],
[12], the intensity-hue-saturation (IHS)-based method [13],
and the Gram–Schmidt (GS) method [14], with distinctions
lying in their projection rules. The CS-based approaches can
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Fig. 1. Visual presentation based on the reduced-resolution images captured
by the GaoFen-2 satellite, depicting various land covers. Line 1 illustrates
farmland, Line 2 represents a mixed area of farmland and water, Line 3
portrays a complex urban area, and Line 4 showcases a mixed area of urban
and forest land.

achieve superior spatial quality but are still subject to spectral
distortion.

The MRA-based pansharpening approaches assume that
the spatial disparity between LRMS and HRMS images is
due to the absence of high-frequency spatial information
and inject high-frequency information from PAN images
via multiscale decomposition. The conventional multiscale
decomposition algorithms include wavelet transform, pyra-
mid Laplacian transform, and more. The typical MRA-based
methods encompass modulation transfer function-generalized
Laplacian pyramid (MTF-GLP) [15], [16], [17], àtrous wavelet
transform (ATWT) [18], and proportional additive wavelet
intensity method (AWLP) [19]. This category of approaches
can produce HRMS with high spectral fidelity, but the spatial
quality is relatively low.

The VO-based pansharpening approaches treat the pan-
sharpening process as an ill-posed inverse problem and recast
the problem as a VO problem with a hypothetical image con-
nection model. Two stages comprise the VO-based methods:
1) constructing the objective function and 2) optimally solving
the objective function, mainly based on iterative optimization
algorithms [20]. In general, the objective function includes
a fidelity term and a regularization term that contains prior
knowledge. According to the classification of the objective
function, the representative VO-based works include P +
XS methods [21], Bayesian-based methods [22], [23], and
sparse representation-based methods [24]. Although compared
to the aforementioned two methods, VO-based approaches
may effectively balance spatial augmentation and spectral
preservation, they are computationally costly and may produce
poor fusion outcomes if the underlying assumptions do not
match the fusion situation.

Due to the outstanding feature extraction and aggregation
capabilities of deep neural networks, DL-based approaches
have become a significant research trend in recent years.
Convolutional neural networks (CNNs) [25] have gained con-

siderable attention for their excellent performance in pansharp-
ening tasks. Various CNN-based methods have been proposed,
including the first DL-based pansharpening method [26], the
first full CNN-based PNN [27], PanNet [28], DRPNN [29],
TFNet [30], and DSSN [31]. However, CNN-based methods
can suffer from feature smoothing caused by vanilla convolu-
tion, leading to poor fusion results at the boundaries [32].

Recently, transformer models [33], [34] have gained pop-
ularity in pansharpening due to their improved capabil-
ity for long-range modeling. Examples include the pure
transformer-based method [35] and the transformer-based
regression network [36]. It is worth mentioning that some
methods integrate CNN and transformer for both local and
global features extraction [37].

Generative models, such as generative adversarial networks
(GANs) [38], have also been utilized for pansharpening,
aiming to obtain higher quality HRMS images through the
mutual adversarial of generators and discriminators [39], [40].
However, balancing these models remains a challenging task.

Unsupervised pansharpening fusion has also seen recent
breakthroughs, with methods such as UP-SAM [41] using
an unsupervised self-attention mechanism to explicitly extract
details and inject them in a spatially varying manner. Further-
more, PanGAN [42] and UPanGAN [43] propose spectral and
textural losses constrained GAN for unsupervised learning.

Overall, the field of DL-based pansharpening has been
enriched by numerous contributions, including CNNs, trans-
formers, GAN, invertible neural networks [44], and other
methods that continue to advance the state of the art in
pansharpening fusion.

Upon conducting an exhaustive review and analysis,
we observed that: 1) traditional methods are constrained
by the linear transformation process; 2) DL methods that
rely on convolutional neural networks (CNNs) frequently
grapple with feature smoothing or require spatial detail and
gradient augmentation to mitigate this issue; and 3) GAN-
based methods struggle with stable training. In addition,
both conventional and DL-based techniques center on the
standard pansharpening framework, which primarily entails
the processing and fusion of PAN and LRMS images. These
images facilitate the extraction of crucial features, which are
subsequently utilized to learn the mapping from PAN and
LRMS images to HRMS images. To surmount the inherent
limitations of traditional and DL-based methods, we introduce
a novel denoising diffusion probabilistic model (DDPM)-based
pansharpening model, PanDiff. Our experimental results reveal
that the proposed PanDiff and its distinct pansharpening fusion
framework offer the following advantages: 1) exceptional
pansharpening results with elevated metrics; 2) robust pan-
sharpening performance with reduced variance; and 3) superior
spatial details. However, PanDiff also confronts the challenge
of low runtime efficiency, which necessitates further research.
The main contributions of PanDiff are given as follows.

1) PanDiff is the first generative model based on the DDPM
specifically designed for pansharpening applications.

2) PanDiff alters the learning objective of the traditional
fusion networks. It decomposes the complex fusion

Authorized licensed use limited to: Jiangnan University. Downloaded on February 25,2024 at 01:20:42 UTC from IEEE Xplore.  Restrictions apply. 



MENG et al.: PanDiff: A NOVEL PANSHARPENING METHOD BASED ON DDPM 5611317

process of PAN and LRMS images into a multistep
Markov process and primarily learns the data distri-
bution of the difference map (DM) between HRMS
and interpolated MS (IMS), rather than the spatial and
spectral information of HRMS.

3) PanDiff deviates from the traditional approach of treat-
ing input PAN and MS as the primary objects for
feature extraction. Instead, it injects the PAN and MS
images, intercalibrated by a modal intercalibration mod-
ule (MIM), as guiding conditions for the U-Net to learn
the data distribution of the DM between HRMS and
IMS.

The remainder of this article is organized as follows.
Section II introduces the background of pansharpening and
the basic principles of DDPM. Section III details our pro-
posed PanDiff. Section IV provides the information on the
experimental settings. In Section V, we compare PanDiff with
state-of-the-art methods and present the results of the ablation
experiments. Finally, in Section VI, we draw conclusions and
outline future research directions.

II. BACKGROUND AND PRELIMINARY

In this section, we review the basic theory of pansharpening
and the fundamentals of DDPM. To facilitate reading and
reduce ambiguity, we first define the common notation in the
Nomenclature.

A. Pansharpening

The primary objective of pansharpening is to identify a sta-
ble mapping function Fθ (·) from LRMS and PAN to the ideal
HRMS. Consequently, the general definition of pansharpening
is given in the following equation:

M̂S = Fθ (MS, P). (1)

In order to solve this mapping function, many studies
have developed classical algorithms from physical properties
and algorithmic optimization, among which the CS- and
MRA-based approaches are the most representative.

The CS-based approaches optimize (1) from the perspective
of CS, and the schematic can be seen in Fig. 2(a). They
obtain HRMS by replacing the spatial structure components
of IMS (IMSL) with the spatial detail information of PAN
and injecting gain functions with the following equation:

M̂S = M̃S+ Gθ (P− IL) (2)

where IL is generated through the linear combination of the
LRMS spectral bands and Gθ (·) is the injection gain function.

The MRA-based approaches still follow the same idea
of injecting high spatial structure information from PAN to
IMS, but the method and source of extracting information are
different. This category of approaches obtains high-frequency
information (PANH) directly through PAN, as in the following
equation:

M̂S = M̃S+ Gθ (P− PL) (3)

where PL is generated by employing low-pass filtering on
PAN.

Fig. 2. Schematic of (a) CS-based approach, (b) MRA-based approach, and
(c) DL-based approach in supervised fashion.

Unlike the two approaches described above, since the
backpropagation algorithms [45] of DL-based approaches can
effectively fit arbitrary functions, they often do not involve
physically significant assumptions on pansharpening, allowing
this family of approaches to solving for the mapping functions
directly based on (1).

It is worth noting that both traditional and DL-based meth-
ods have their individual characteristics. The traditional meth-
ods essentially bridge the gap between IMS and HRMS by
means of high spatial structure injection, while the DL-based
methods directly model the relationships between the input
LRMS and PAN and output HRMS due to the powerful
function fitting capability of neural networks. However, both
traditional and DL-based approaches try to extract the key
features by directly performing complex transformations on
PAN and LRMS and to find the better mapping function.

B. Denoising Diffusion Probabilistic Models

DDPMs are a kind of discrete latent variable model that
is prevalent in many generative tasks, such as text-to-image
generation [46], image-to-image translation [47], and image
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editing [48]. It is parameterized by a finite T timesteps Markov
chain and uses variational inference to gradually transform an
isotropic Gaussian noise xT ∼ N (0, I ) into a sample x0 from
the target distribution, which can be written as

pθ (x0:T ) = p(xT )

T∏
t=1

pθ (xt−1 | xt ) (4)

where x1, . . . , xT−1 are latent states of the same dimension as
the prior data distribution x0 ∼ q(x0) and the starting state
p(xT ) = N (xT ; 0, I ).

DDPMs contain two stages: the forward diffusion process
and the reverse denoised process.

1) Forward (Diffusion) Process: The forward diffusion
process begins with the prior data distribution x0. Then,
an approximate standard normal distribution xT ∼ N (0, I ) is
obtained by continuously adding Gaussian noise to x0 through
the Markov chain process. The Gaussian transition in the
forward diffusion process of any adjacent latent states on
Markov chains is formulated as follows:

q(xt | xt−1) = N
(

xt ;
√

1− βt xt−1,
√

βt I
)

(5)

where βt represents the variance of the added Gaussian noise
in the transition process from xt−1 to xt and all the variance
schedule β1, . . . , βT ∈ [0, 1).

The forward diffusion process is given by the approximate
posterior q(x1:T | x0) as the following equation:

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1). (6)

Substituting (5) into (6), after reparameterization [49], the
data distribution q(xt ) of the latent state xt at any arbitrary
timestep t can be derived based on x0 and βt . The following
equation gives this derivation:

q(xt | x0) = N
(

xt ;

√
ᾱx0,

√
1− ᾱ I

)
(7)

ᾱt =

t∏
i=1

(1− βi ). (8)

2) Reverse (Denoised) Process: The purpose of DDPM is
to recreate a sample in the specific data distribution q(x0)

from sampling the Gaussian noise xT , which requires the
reverse denoised process to learn the parameterized Gaussian
transition q(xt−1 | xt ). Note that if βt is small enough,
q(xt−1 | xt ) will also be Gaussian [50]. However, it is hard
to estimate q(xt−1 | xt ), we have to use a model pθ to
approximate these conditional probabilities by fitting the mean
and variance. The Gaussian transition in the reverse denoised
process of any adjacent latent states on Markov chains is
formulated as follows:

pθ (xt−1 | xt ) = N (xt−1;µθ (xt , t), 6θ (xt , t)) (9)

where t ∈ [1, T ], µθ and 6θ are the mean and variance of
pθ (xt−1 | xt ), respectively, and set 6θ (xt , t) = σ 2

t I .
Substituting (5) and (7) into the conditional probability

q(xt−1 | xt , x0) = N (xt−1; µ̃t (xt , x0), β̃ t I ) and using Bayes’

rule, the mean µ̃t (xt , x0) and variance β̃ t can be parameterized
as follows:

µ̃t (xt , x0) =
1
√

αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
αt = 1− βt (10)

β̃ t =
1− ᾱt−1

1− ᾱt
· βt . (11)

3) Optimization Objective: The optimization objective of
the DDPM is to recreate a sampling distribution x̃0 that is as
close as possible to the prior data distribution x0, which can
be achieved by minimizing the negative log likelihood (NLL)
and optimized by using the variational lower bound

− log pθ (x0) ≤ − log pθ (x0)

+DKL(q(x1:T | x0) ∥ pθ (x1:T | x0))

= Eq

[
log

q(x1:T | x0)

pθ (x0:T )

]
= Eq

[
− log p(xT )−

∑
t≥1

log
pθ (xt−1 | xt )

q(xt | xt−1)

]
= Eq [DKL(q(xT | x0) ∥ p(xT ))︸ ︷︷ ︸

LT

+

∑
t>1

DKL(q(xt−1 | xt , x0) ∥ pθ (xt−1 | xt ))︸ ︷︷ ︸
Lt−1

− log pθ (x0 | x1)
]︸ ︷︷ ︸

L0

(12)

where DKL(· ∥ ·) means the Kullback–Leibler divergence [51]
and LT and L0 are fixed values after the data distribution
x0 and the noise scheme β are determined. The parameterized
Lt−1 is given as the following equation after substituting the
mean and variance of q(xt−1 | xt , x0) and pθ (xt−1 | xt ):

Lt−1 = Ex0,ϵ

[
1

2σ 2
t

∥∥µ̃t (xt , x0)− µθ (xt , t)
∥∥2
]
. (13)

Thus, the optimization objective is simplified to make the
predicted distribution pθ (xt−1 | xt ) as close as possible to the
posterior distribution q(xt−1 | xt , x0) for any timestep t > 1.

III. PANDIFF

In this section, we describe the details of PanDiff, including
the design, the process, and the MIM.

A. Design of PanDiff

Although DDPM is a highly capable generative model, to be
applicable to pansharpening, it is confronted with two major
issues: 1) how to destroy HRMS with rich spatial and spectral
information into approximate Gaussian noise xT in limited
timesteps and 2) how to guide the random Gaussian noise
xT to simulate the process of HRMS reconstruction, which
inherently involves substantial uncertainty. We try to solve
the above two problems by proposing PanDiff from a novel
pansharpening fusion framework, as shown in Fig. 3.

In order to solve the above two problems, some adjustments
are applied in PanDiff.
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Fig. 3. Overall framework of the proposed PanDiff.

1) Difference Map: The use of DM of HRMS and IMS
as learning objects for the proposed fusion framework is
mainly motivated by two considerations. On the one hand,
this strategy can effectively alleviate the difficulty of the work
that involves converting the HRMS into a Gaussian noise and
reconstructing it by reversion in a limited number of timesteps.
On the other hand, the fusion objective of PanDiff is more
clearly defined, which undoubtedly leads to better performance
of the model.

2) Condition Injection: Since DDPM has a large uncer-
tainty in the reverse process of reconstructing the initial input
x0 from Gaussian noise, PAN and LRMS images are used
as conditional injections to bootstrap (4), and this process is
rewritten as follows:

pθ (x0:T ) = p(xT )

T∏
t=1

pθ (xt−1 | xt , cond) (14)

cond = 8(P, MS) (15)

where 8(·) is the encoder branch for processing PAN
and LRMS images as the injected condition. More specif-
ically, we achieve condition injection by concatenating
modal-calibrated PAN and MS features by MIM with xt .

B. Process of PanDiff

PanDiff is an improved DDPM method designed for pan-
sharpening, and we discuss it in greater detail in the following.

1) Forward (Diffusion) Process: In this process, we feed the
DM as the input to PanDiff (x0 in Fig. 3) and continuously
add Gaussian noise to x0 based on the Markov chain mod-
eling approach to obtain an approximate standard Gaussian
distribution (xT in Fig. 3) and generate t − 1 latent states
{x1, x2, . . . , xT−1}. The process of adding noise is executed a
total of T times and the noise variance βt increases linearly
as timestep t increases. Since the function of βt versus t is
artificially set, it is possible to directly calculate the latent
states at each step by reparameterized (7), as indicated in the

following equation:

xt =

√
ᾱx0 +

√
1− ᾱϵ

ϵ ∼ N (0, I ). (16)

2) Reverse (Denoised) Process: The intention of this pro-
cess is to learn the unknown reverse process q(xt−1 | xt ) of
T -step. We first sample a random noise (xT in Fig. 3) from
a standard Gaussian distribution and build a neural network
ϵθ to model the transition from xt to xt−1 given conditions by
learning the data distribution [i.e., the mean µθ (xt , cond, t)
and variance 6θ (xt , cond, t)] of pθ (xt−1 | xt , cond). Timestep
t is input into the network via time embedding in order to
bolster the variance at each timestep. In addition, to guide
the network’s learning of this DM reconstruction process,
the modal-calibrated PAN and MS features are treated as the
injected conditions for each timestep.

3) Architecture of Network ϵθ : When DDPM is proposed,
U-Net [52] with the attention module is utilized [53] and
proven to be more adept at fitting the data distribution [54].
We follow the main structure of U-Net in DDPM and add an
information intercalibration module to the injected conditions
PAN and MS for better handling of the relationship between
different modal data.

4) Time Embedding: In order to enhance the precision
of predicting the distribution pθ (xt−1 | xt , cond), it is
crucial to increase the model ϵθ ’s sensitivity toward timesteps.
To accomplish this, the technique of time embedding is intro-
duced. The simplified optimization objective (18) explicitly
indicates that

√
ᾱt has the most direct impact on model

prediction performance among all mappings of timesteps t ,
and sinusoidal position embeddings [33] are applied to

√
ᾱt

TE(t, i) = Concat

([
sin

( √
ᾱt

10000
i

d−1

)
, cos

( √
ᾱt

10000
i

d−1

)])
(17)

where d is the half dimension of the time embedding, i =
{0, 1, . . . , d − 1}. TE(t, i) ∈ R2 and the time embedding fea-
ture TE(t) ∈ R2d is obtained by concatenating {TE(t, i)}d−1

i=0 .
TE(t) is currently a constant value that is not trainable.
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As a solution, two multilayer perceptron (MLP) layers are
introduced to acquire the final trainable TE(t).

5) Model Training: Following the forward and reverse
processes of PanDiff described above, the latent state transition
is learned by the neural network for each step and the error is
backpropagated to train the model. We give the optimization
objective Lsimple in the following equation after adding the
condition and simplifying the parameterized Lt−1 in (13):

Lsimple(θ)

= Et,x0,ϵ

[∥∥∥∥ϵ − ϵθ

(√
ᾱt x0 +

√
1− ᾱtϵ, cond, t

)∥∥∥∥2
]
. (18)

The detailed training process of PanDiff can be found in
Algorithm 1.

Algorithm 1 Training Algorithm for PanDiff
Input: Pansharpening dataset

D = {(Pi , MSi , GTi )}
N
i=1.

1 repeat
2 Sample (Pi , MSi , GTi ) ∼ D
3 t ∼ Uniform({1, . . . , T })
4 ϵ ∼ N (0, I )
5 M̃Si = Interpolate(MSi )

6 x0 = 1MSi = GTi − M̃Si

7 cond = 8(Pi , MSi )

8 Take gradient descent step on

∇θ

∥∥∥ϵ − ϵθ

(√
ᾱt x0 +

√
1− ᾱtϵ, cond, t

)∥∥∥2

9 until converged;

6) Model Sampling: After training U-Net ϵθ , the inference
of xt−1 from xt becomes possible according to (9). The
distribution of q(xt−1 | xt ) is predicted by successive T
timesteps, and by sampling noise and reparameterization from
the predicted distribution, the data distribution of the DM can
finally be deduced. The details of the sampling process are
shown in Algorithm 2.

Algorithm 2 Sampling Algorithm for PanDiff
Input: Pansharpening data Di = (Pi , MSi , GTi ) ∼ D,

Neural Network ϵθ .
Output: M̂Si

1 xT ∼ N (0, I )
2 for t ← T to 1 do
3 z ∼ N (0, I ) if t>1, else z = 0
4 cond = 8(Pi , MSi )

5 xt−1 =
1
√

αt

(
xt −

1−αt√
1−ᾱt

ϵθ (xt , cond, t)
)
+ σt z

6 end
7 M̂Si = x0 + M̃Si

8 return M̂Si

C. Modal Intercalibration Module

Significant modal differences (i.e., spectral and spatial dif-
ferences) exist between PAN and LRMS images, allowing

Fig. 4. Schematic of (a) MIM-Spectral and (b) MIM-Spatial.

PAN and LRMS images to guide the modeling of q(xt−1 | xt )

in neural networks by focusing on various aspects. Directly
feeding PAN and LRMS into U-Net is not a sensible strategy.
To explicitly leverage the modal variations between PAN and
LRMS images to enhance the injection conditions, we pro-
pose an MIM considering both the channel and the spatial
information intercalibration.

First, PAN and IMS images are fed into the convolution
module to obtain dimension-specific PAN features IPAN ∈

RH×W×c and IMS features IMS ∈ RH×W×c. Following this, the
spectrum information intercalibration module (MIM-Spectral)
and the spatial information intercalibration module (MIM-
Spatial) are applied to the features IPAN and IMS, respectively;
MIM-Spectral and MIM-Spatial are introduced in detail next.

1) MIM-Spectral: The diagram of MIM-Spectral is shown
in Fig. 4(a). To calibrate the spectral differences between PAN
and LRMS images, we obtain sufficient spectral information
vectors vp ∈ Rc as a basis for intercalibration by averag-
ing global pooling and max global pooling via the channel
dimension and concatenate them to form Vc ∈ R4c. Next,
an MLP and a sigmoid function σ(·) are used to obtain
channel calibration weights for PAN and MS features, named
CCPAN and CCMS. Finally, the PAN and MS features are
multiplied elementwise with CCPAN and CCMS in the channel
dimension, respectively, and are added with the PAN and MS
features themselves to obtain the final spectral intercalibrated
information I ′PAN and I ′MS. The process of MIM-Spectral is
shown in the following equation:

CCMS, CCPAN = σ(MLP(VC))

I ′MS = IMS × CCMS + IMS

I ′PAN = IPAN × CCPAN + IPAN. (19)

2) MIM-Spatial: The illustration of MIM-Spatial can be
found in Fig. 4(b). MIM-Spatial concatenates the input spectral
intercalibrated information I ′PAN and I ′MS and performs average
global pooling and maximum global pooling in the channel
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dimension to obtain vp ∈ Rh×w×1. Compared with MIM-
Spectral, MIM-Spatial has to deal with more complicated
modeling information, so we generate a small amount of key
information v1×1 ∈ RH×W×2 by 1 × 1 convolution. Then,
we concatenate vp and v1×1 as VS ∈ RH×W×4 and input them
into an MLP and obtain spatial correction weights SCPAN and
SCMS by a sigmoid function

SCMS, SCPAN = σ(MLP(VS))

I ′′MS = I ′MS × SCMS + I ′MS

I ′′PAN = I ′PAN × SCPAN + I ′PAN. (20)

IV. DATASETS AND EXPERIMENTAL DETAILS

A. Datasets

The PanCollection dataset [55] containing data from three
satellites (GaoFen-2, QuickBird, and WorldView-3) is utilized
to evaluate our PanDiff with other state-of-the-art methods
fairly and comprehensively. The three types of data cover
different geographical locations with various bands and spatial
resolutions. Specifically, the spatial resolutions of PAN images
in GaoFen-2 and QuickBird are 0.8 m and 0.6 m, respectively,
and their corresponding MS images are 3.2 and 2.4 m with four
bands, including red, green, blue, and near infrared. Compared
with the two data mentioned above, WorldView-3 has a higher
spatial resolution (PAN: 0.3 m and MS: 1.2 m) and provides
four more bands, including coastal, yellow, red edge, and
near infrared-2. Moreover, the data from WorldView-2 with
eight bands are utilized for generation tests. The more specific
information of these four data is presented in Table I.

B. Benchmark

The benchmark consists of two representative CS-based
methods (the Brovey transform with haze correction
(BT-H) [56] and the band-dependent spatial detail with
physical constraints (BDSD-PC) [57]), two representative
MRA-based methods (the generalized Laplacian pyramid with
MTF-matched filters with an FS regression-based injection
model (MTF-GLP-FS) [16], and the generalized Laplacian
pyramid with MTF-matched filters and a high-pass modulation
injection model with a preliminary regression-based spectral
matching phase (MTF-GLP-HPM-R) [17]) and seven state-
of-the-art DL-based CNN methods (PNN [27], PanNet [28],
DRPNN [29], the multiscale and multidepth convolutional
neural network (MSDCNN) [58], the detail injection-based
CNN (DiCNN) [59], the explicit spectral-to-spatial convolu-
tion (SSconv) [60], and the triple-double convolutional neural
network (TDNet) [61]), and two state-of-the-art GAN methods
(PSGAN [39] and MDSSC-GAN [40]). The implementation
of the above methods heavily relies on DLPan-Toolbox [55],
[62].1

C. Evaluation Metrics

To quantitatively assess the rationality and superiority of
the proposed method, we introduce several reduced- and

1The source code of these comparison methods can be found at the website:
https://github.com/liangjiandeng/DLPan-Toolbox

full-resolution evaluation metrics in our experiment. For the
reduced resolution, the evaluation metrics include the peak
signal-to-noise ratio (PSNR), the structural similarity index
(SSIM) [63], the spectral angle mapper (SAM) [64], the erreur
relative globale adimensionnelle de synthèse (ERGAS) [65],
and the spatial correlation coefficient (SCC) [66]. These
evaluation metrics possess good discriminative power for
different features of the fused images. SSIM and SCC more
effectively measure the spatial similarity of the results, while
SAM focuses on discriminating spectral differences. PSNR
and ERGAS evaluate the model performance considering both
spectral and spatial differences.

For the full-resolution experiments, we employ the
no-reference evaluation metric quality without reference
(QNR) [67] to evaluate the performance of the model on real
images, as no reference image is available. QNR comprises
evaluation metrics Dλ and DS , which are used to assess
spectral and spatial distortions, respectively. However, it has
been pointed out that the assumptions in the calculation of
the spectral distortion index are flawed [68]. Thus, we also
utilize another hybrid QNR (HQNR) [69] to circumvent this
issue and prevent potential misjudgment of the experimental
results.

D. Data Preprocessing and Augmentation

The specific strategy for data preprocessing and augmenta-
tion in this experiment is given as follows.

1) Preprocessing (Data Normalization): Since both the
input and output of DDPM need to be approximated
as standard Gaussian distributions, the normalized data
need to be obtained by the calculation of the following
equations:

d ′ = 2×
d
2γ
− 1 (21)

where γ is the radiometric resolution of the data, and
the output d ′ will be normalized to [−1, 1].

2) Augmentation (Random Flipping): A good pansharp-
ening algorithm should be insensitive to the rotation
of images, so we strengthen the algorithm by random
flipping (horizontal and vertical) and rotation (90◦, 180◦,
and 270◦).

E. Implementation Details

For all experiments, we establish a virtual Anaconda envi-
ronment with Python 3.7 and PyTorch 1.8.2 as the standard.
The specific graph computation platform contains CUDA
11.1, CUDNN 8.0.4, and TensorRT 7.2.3.4 on two NVIDIA
RTX 3090 GPUs.

The specific parameter configuration is given as follows.
All experiments of PanDiff use a batch size of 384. The
models are iterated 320 000 times with weights and evaluated
every 5000 iterations for model performance. Adam with
weight decay (AdamW) [70] is set as the standard optimizer.
We adopt a MultiStep learning rate (LR) scheduler and the LR
is initially set to 1 × 10−4. The milestones and gamma of the
LR scheduler are [96, 000, 192, 000, 288, 000, 304, 000] and
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TABLE I
INFORMATION OF SATELLITE DATA (GAOFEN-2, QUICKBIRD, WORLDVIEW-3, AND WORLDVIEW-2)

TABLE II
TRAINING PARAMETERS FOR COMPARISON METHODS. 0.1/200 IN

LR SCHEDULER MEANS THAT THE LR IS MULTIPLIED BY
0.1 EVERY 200 EPOCHS

0.5. In addition, for the hyperparameters of PanDiff, the total
timesteps T is set to 2000, and the variance βt of added noise
in the forward process is set from 1 × 10−2 to 1 × 10−6.

The training parameters for the comparison methods are
listed in Table II.

V. EXPERIMENTAL RESULTS

In our experiments, the method performance on both
reduced resolution and full resolution is conducted. It is worth
noting that all of the figures are shown in true color (red, green,
and blue), where the specific ground objects are marked by
blue and green boxes and are enlarged at the bottom. The bold
results in the tables indicate the best. In addition, we performed
ablation experiments to verify the effectiveness of the DM and
MIM. Finally, the effect of the hyperparameter total timesteps
T on the model performance and the model runtime efficiency
are also fully discussed.

A. Reduced-Resolution Experiments

In this section, we present the qualitative and quantitative
results of the proposed method and comparison methods on
the GaoFen-2, QuickBird, and WorldView-3 datasets. The size
of the IMS, PAN, and GT images used in the figures in this
section is 256 × 256, to facilitate visual presentation.

As shown in Fig. 5, all of these methods exhibit excellent
fusion performance. From a subjective visual perspective, the
differences between the fusion images are subtle. However, the
fusion performance between traditional methods and DL-based
methods can still be clearly compared on the error map. Based
on the error maps corresponding to each image, it is evident
that the DL-based methods have greater fusion accuracy than
the traditional ones, as indicated by the lower brightness
of their error maps. Among DL-based methods, the color
of the error map for PanDiff is primarily purple and blue,

indicating that the difference between PanDiff and GT is
the smallest, and the fusion performance is the best, fol-
lowed by MDSSC-GAN and PSGAN. In addition, due to the
tendency of smoothing features of CNN, the high-frequency
edge information of the fusion result generates larger errors,
which are specifically manifested as high brightness of the
terrain boundaries in the error map. It can also be seen from
the enlarged blue and green boxes of the fusion image that
PanDiff has the closest spatial texture information and spectral
tone to GT.

In Table III, all the evaluation metrics of the DL-based
method significantly outperform the traditional methods, con-
sistent with the subjective analysis mentioned above. PanDiff
excels in spatial information enhancement and spectral fidelity,
with its minimum SAM value and maximum SSIM and SCC
values. Furthermore, the fusion effect of MDSSC-GAN and
PSGAN is also satisfactory, with relatively good evaluation
metrics. In contrast, PNN and PanNet methods have poor
spatial learning ability and spectral preservation within the DL
methods. In traditional fusion methods, the CS-based methods
exhibit severe spectral distortion (their SAM values are the
highest among these methods), and the MRA-based methods
have poor spatial information (their SCC values are the lowest
among these methods).

As can be seen in Fig. 6, the fusion results of Quick-
Bird case resemble those of GaoFen2, that is, PanDiff,
PSGAN, and MDSSC-GAN exhibit superior fusion perfor-
mance, as observed from the error map. The difference
between traditional fusion methods and DL-based fusion
methods can also be clearly compared from the error map.
However, in the DL-based method, PNN, DiCNN, and TDNet
have poor fusion performance, with high brightness values
in their error maps, even comparable to traditional fusion
methods. Moreover, the clarity of the boats in the blue box can
adequately demonstrate that the fusion results of the DL-based
methods contain richer spatial information compared to those
of the traditional methods. The predominance of PanDiff in
retaining spectral information is visible in the building roof
color in the green box, which has the least visual difference
between the color distribution of GT and that of PanDiff.
In contrast, the spectral learning ability of PanNet and TDNet
is low, and their fused images have comparatively darker tones
than traditional fusion methods.
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TABLE III
QUANTITATIVE METRICS FOR ALL THE COMPARISON METHODS ON THE REDUCED-RESOLUTION GAOFEN-2 DATASET

Fig. 5. Visual comparisons on a reduced-resolution GaoFen-2 case. Lines 1 and 3 are the predicted HRMS for each method, and lines 2 and 4 are the error
map of the predicted HRMS versus GT for each one. (a) BH-T. (b) BDSD-PC. (c) MTF-GLP-FS. (d) MTF-GLP-HPM-R. (e) PNN. (f) PanNet. (g) DRPNN.
(h) MSDCNN. (i) DiCNN. (j) SSconv. (k) TDNet. (l) PSGAN. (m) MDSSC-GAN. (n) PanDiff.

In Table IV, it can be clearly contrasted that PanDiff has
superior evaluation metrics, especially its global evaluation
metrics far surpassing that of other methods. PSGAN and
MDSSC-GAN, which are also based on generative models,
have excellent evaluation metrics results as well. Unlike
the GaoFen-2 fusion results, the DiCNN and TDNet spatial
fusion metrics are unsatisfactory and even inferior to PNN
and PanNet among the DL-based methods. Similar to the
GaoFen-2 fusion results, PNN, PanNet, and TDNet perform
poorly in QuickBird fusion with respect to spectral learn-
ing. Surprisingly, among the traditional methods, the spectral
evaluation metric (SAM) of BT-H, which belongs to the CS-
based method, is better than that of MRA-based methods,
corresponding to subjective vision.

As observed in Fig. 7, in the fusion process of WorldView-3
imagery, the brightness values from the error map indicate that
both PanDiff and MDSSC-GAN display exceptional fusion
performance. The fusion results, particularly the clear and
magnified rooftop textures, reveal that these two methods
excel in enhancing spatial information. Moreover, their fusion

results consistently maintain a high degree of spectral fidelity.
Similarly, the intensity of the error map indicates that the
DL-based method fusion effect is superior to the traditional
one, with the exception of SSconv. SSconv is the most inferior
in the DL-based method, and its feature color in the blue box
of the error map is the brightest, which is comparable to the
traditional method. In addition, the amplified texture details of
the ground objects reveal that the spatial information learning
capability of DL fusion methods is significantly superior to
that of traditional fusion techniques.

In Table V, we can see that the fusion performance of
MDSSC-GAN is comparable to that of the PanDiff network,
and it surpasses PanDiff in some evaluation metrics. However,
the variance of MDSSC-GAN’s evaluation metrics is larger
than that of PanDiff, indicating that the stability of the
network model is inferior. This can also be observed in the
subjective visual presentation, where the spectral fidelity of
the fused images presented in this article does not appear
to be closer to GT than that of PanDiff. Furthermore, while
PSGAN demonstrates commendable spectral fidelity, it is also
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TABLE IV
QUANTITATIVE METRICS FOR ALL THE COMPARISON METHODS ON THE REDUCED-RESOLUTION QUICKBIRD DATASET

Fig. 6. Visual comparisons on a reduced-resolution QuickBird case. Lines 1 and 3 are the predicted HRMS for each method, and lines 2 and 4 are the error
map of the predicted HRMS vs. GT for each one. (a) BH-T. (b) BDSD-PC. (c) MTF-GLP-FS. (d) MTF-GLP-HPM-R. (e) PNN. (f) PanNet. (g) DRPNN.
(h) MSDCNN. (i) DiCNN. (j) SSconv. (k) TDNet. (l) PSGAN. (m) MDSSC-GAN. (n) PanDiff.

confronted with the challenge of higher variance. In light
of these findings, we deduce that the PanDiff method not
only offers superior fusion performance but also maintains
a higher level of stability. In contrast, TDNet and SSconv
spectral are the most distorted, even comparable to the spectral
learning effect of traditional fusion methods, and their spatial
enhancement effect is also not desirable among the DL-
based methods. Similar to the QuickBird fusion effect, as for
the traditional methods, the spectral fidelity of the BT-H
fused effect is higher, while the spatial information of the
MTF-GLP-FS fused effect is richer, which differs from the
individual theoretical advantages of the CS- and MRA-based
methods.

It is worth noting that the standard deviation (std) val-
ues of all evaluation metrics of PanDiff are small in these
three sets of reduced-resolution experiments, which are in the
middle-to-upper level of these comparison methods, indicating
that PanDiff has strong fusion stability for various cate-
gories of ground objects in different types of remote sensing
data.

B. Full-Resolution Experiments

The reduced-resolution experiments primarily reflect the
performance of the method on simulated data, but its applica-
bility to real data remains uncertain. To thoroughly demon-
strate the efficacy of our method, we conduct evaluation
experiments on full-resolution satellite images in this section.
For ease of visual presentation, the size of the PAN and IMS
images used in the figures in this section is 512 × 512.

Table VI and Fig. 8 present the quantitative and graphical
results, respectively, both based on the GaoFen-2 dataset.
In full-resolution experiments, the evaluation metric Dλ

clearly highlights the spectral fidelity gap between traditional
and DL-based methods, which is a positive indication of the
prominent spectral learning potential of DL-based methods,
except for DRPNN. The evaluation metric DS also contributes
to the evidence that the DL-based method recovers spatial
features at full resolution more successfully. Our PanDiff out-
performs other methods in both spectral and spatial evaluation
metrics. In addition, the fusion results of SSconv and PSGAN
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TABLE V
QUANTITATIVE METRICS FOR ALL THE COMPARISON METHODS ON THE REDUCED-RESOLUTION WORLDVIEW-3 DATASET

Fig. 7. Visual comparisons on a reduced-resolution WorldView-3 case. Lines 1 and 3 are the predicted HRMS for each method, and lines 2 and 4 are
the error map of the predicted HRMS versus GT for each one. (a) BH-T. (b) BDSD-PC. (c) MTF-GLP-FS. (d) MTF-GLP-HPM-R. (e) PNN. (f) PanNet.
(g) DRPNN. (h) MSDCNN. (i) DiCNN. (j) SSconv. (k) TDNet. (l) PSGAN. (m) MDSSC-GAN. (n) PanDiff.

TABLE VI
QUANTITATIVE METRICS FOR ALL THE COMPARISON METHODS ON THE FULL-RESOLUTION GAOFEN-2 DATASET

are also comparable at full resolution. However, surprisingly,
DRPNN, which performs well at reduced resolution, does not
seem to effectively transfer the satisfactory performance to full
resolution. In addition, the optimal QNR and HQNR values
can comprehensively reflect that our proposed PanDiff has

superior fusion performance among all comparison methods.
The green vegetation and the brown ground in the bottom
boxes of Fig. 8 can also be a good discriminator of the
differences in the information retention capacity of these
methods. Specifically, the fusion results of CS-based methods
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TABLE VII
QUANTITATIVE METRICS FOR ALL THE COMPARISON METHODS ON THE FULL-RESOLUTION QUICKBIRD DATASET

TABLE VIII
QUANTITATIVE METRICS FOR ALL THE COMPARISON METHODS ON THE FULL-RESOLUTION WORLDVIEW-3 DATASET

have obvious spectrum disparities with IMS, and DRPNN
performs badly in both spectral and spatial aspects among the
DL-based methods.

The full-resolution experiments conducted on QuickBird
are shown in Fig. 9 and Table VII. PanDiff outperforms all
competing methods in terms of QNR and HQNR evaluation
metrics. However, the Dλ values of PSGAN and MTF-GLP-
FS both slightly exceed that of PanDiff, while the DS value of
MDSSC-GAN is slightly lower. Compared with the traditional
methods, the spatial enhancement effects of DL-based methods
remain exceptional. The superior spatial learning capabilities
of PanDiff, MDSSC-GAN, and DRPNN can be discerned from
the clarity of magnified buildings in Fig. 9. According to the
QNR and HQNR, the fusion result of TDNet is the poorest
among DL-based methods, which contrasts with the GaoFen-2
fusion.

The results of the full-resolution experiments for the
WorldView-3 dataset are shown in Table VIII and Fig. 10.
PanDiff maintains its typical advantages over comparative
methods. Nevertheless, the Dλ values of the two MRA-based
methods demonstrate remarkable advantages, showcasing high
spectral fidelity in the fusion of WorldView-3’s real resolution
data. It is worth noting that PNN has exhibited superior
spatial information learning capability and fusion performance,
with its evaluation metrics even surpassing many complex
networks, which is in stark contrast to the two experiments
mentioned above. We are also able to observe similar results
as on the QuickBird data, i.e., the traditional methods are able

to remain competitive with the DL-based methods in terms of
Dλ but have a significant disadvantage in terms of DS .

The results of the three full-resolution experiments in this
section provide convincing evidence for the usefulness of our
proposed PanDiff in real data.

C. Generalization Test

In addition to the traditional fusion methods, it is essential
to evaluate the generalization capacity of the DL models
discussed above. Therefore, we use WorldView-2 images to
perform cross-sensor, cross-resolution generalization experi-
ments on the model trained with WorldView-3 data. Fig. 11
shows the results of the experiment testing generalization.

The results of the generalization test indicate that PanDiff,
MDSSC-GAN, PSGAN, TDNet, SSconv, and PanNet are rich
in spatial information, while the other fusion methods have
poor spatial details with blurred feature textures. PanDiff and
PSGAN have good spectral retention, and the color tone of
their fusion results is closer to that of IMS. In contrast, other
fusion methods suffer from spectral distortion, where the fused
images of PanNet and SSconv are lighter in color than IMS,
whereas that of PNN, MSDCNN, MDSSC-GAN, DiCNN,
and TDNet methods are darker. In summary, PanDiff shows
high robustness with excellent spectral retention and spatial
enhancement capabilities. PNN and MSDCNN have less stable
networks due to their simple network structure. Moreover, the
overly complex network structure of TDNet leads to training
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Fig. 8. Visual comparisons on a full-resolution GaoFen-2 case. (a) BH-T. (b) BDSD-PC. (c) MTF-GLP-FS. (d) MTF-GLP-HPM-R. (e) PNN. (f) PanNet.
(g) DRPNN. (h) MSDCNN. (i) DiCNN. (j) SSconv. (k) TDNet. (l) PSGAN. (m) MDSSC-GAN. (n) PanDiff.

Fig. 9. Visual comparisons on a full-resolution QuickBird case. (a) BH-T. (b) BDSD-PC. (c) MTF-GLP-FS. (d) MTF-GLP-HPM-R. (e) PNN. (f) PanNet.
(g) DRPNN. (h) MSDCNN. (i) DiCNN. (j) SSconv. (k) TDNet. (l) PSGAN. (m) MDSSC-GAN. (n) PanDiff.

Fig. 10. Visual comparisons on a full-resolution WorldView-3 case. (a) BH-T. (b) BDSD-PC. (c) MTF-GLP-FS. (d) MTF-GLP-HPM-R. (e) PNN. (f) PanNet.
(g) DRPNN. (h) MSDCNN. (i) DiCNN. (j) SSconv. (k) TDNet. (l) PSGAN. (m) MDSSC-GAN. (n) PanDiff.

overfitting, which makes TDNet exhibit a poor degree of
spectral retention when processing other images.

D. Ablation Experiments of PanDiff

To demonstrate the effectiveness of the differential
map-based design in overcoming the problem of high uncer-
tainty of HRMS generated by DDPM in the field of pansharp-
ening and to show the usefulness of the MIM, we present
the results of ablation experiments on the GaoFen-2 dataset in
this section.

1) Effectiveness of DM: As shown in Table IX, the introduc-
tion of differential maps can lead to a significant enhancement
of model performance. Examining the outcomes of reduced-

and full-resolution studies separately reveals some interesting
insights. In the reduced-resolution experiments, the results
are as expected; since more data information must be recon-
structed, not using the DM decreases performance by 0.93,
0.0028, 0.0922, and 0.0589 for PSNR, SSIM, SAM, and
ERGAS, respectively, but the drop is not excessive. However,
omitting the DM significantly degrades the model’s ability to
retain spectral information for full-resolution images, although
the difference in spatial detail retention is negligible.

2) Effectiveness of MIM: We demonstrate the validity of
MIM-Spectral and MIM-Spatial based on the validation of
the DM. MIM-Spectral and MIM-Spatial can improve Pan-
Diff’s spectral and spatial fidelity, respectively. As shown in
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Fig. 11. Visual comparisons on a full-resolution WorldView-2 case for generalization test. (a) BH-T. (b) BDSD-PC. (c) MTF-GLP-FS. (d) MTF-GLP-HPM-R.
(e) PNN. (f) PanNet. (g) DRPNN. (h) MSDCNN. (i) DiCNN. (j) SSconv. (k) TDNet. (l) PSGAN. (m) MDSSC-GAN. (n) PanDiff.

TABLE IX
QUANTITATIVE METRICS FOR PANDIFF ABLATION EXPERIMENTS ON THE GAOFEN-2 DATASET

TABLE X
QUANTITATIVE METRICS FOR PANDIFF WITH DIFFERENT TOTAL TIMESTEPS T ON THE GAOFEN-2 DATASET

Fig. 12. Experiment results of different timesteps T. (a) PSNR and QNR
versus timesteps. (b) Dλ and DS versus T .

Table IX, PanDiff without MIM-Spectral has a substantial
reduction in the spectral metrics SAM and Dλ, by 0.0698 and
0.0081, respectively; PanDiff without MIM-Spatial has a

reduction in the spatial structure metrics SSIM and DS ,
by 0.0042 and 0.0071, respectively.

In summary, both the design of DM and the MIM proposed
in this article make significant contributions to the excellent
performance of PanDiff.

E. How Timesteps Affect PanDiff

The total number T of timesteps is one of the key factors
affecting the performance and operating efficiency of Pan-
Diff. Table X shows the results of PanDiff at reduced- and
full-resolution under different T values. When T decreases
from 2000 to 500, the mean value of PanDiff’s performance
at reduced resolution is relatively stable, but the std becomes
larger, which means that the stability of PanDiff performance
is related to T . However, in the full-resolution experiment,
both the mean value and the variance of PanDiff’s performance
become worse to a certain extent. Moreover, when T continues
to drop to 100, the performance of PanDiff decreases signif-
icantly both at reduced resolution and full resolution, which
may be related to the fact that 100 timesteps of noise addition
in the forward process are not enough to turn DM into noise
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TABLE XI
COMPARISON OF PARAMETERS, INFERENCE SPEED, AND PSNR (ON

GAOFEN-2) OF THE COMPETING PANSHARPENING METHODS. THE
DIMENSION OF TESTED IMAGE IS 2 × 4 × 1024 × 1024

conforming to an approximate Gaussian distribution. However,
it is not true that the larger T , the better the experimental
results. When T increases from 2000 to 3000, there is only a
very weak improvement in the spatial metrics, but the spectral
metrics at the reduced resolution become even slightly worse,
and in short, the overall improvement in model performance
is not significant.

F. Runtime Efficiency

This section discusses the runtime efficiency of the model
from two perspectives: the number of parameters and infer-
ence speed. Table XI presents the basic information on the
parameter count and inference speed of PanDiff compared to
other methods. PanDiff exhibits a larger parameter count than
most competing techniques, and due to the requirement of T
timesteps sampling during inference, its speed is dramatically
reduced. This results in PanDiff often taking 50–100 times
longer for inference than other methods. This drawback is
expected to be addressed in future research by employing
interval sampling techniques to accelerate the algorithm’s
inference speed.

VI. CONCLUSION

In this article, a novel DDPM-based pansharpening method
called PanDiff is proposed, which is the first application of
DDPM to pansharpening. Our method presents two fresh
perspectives with a successful case based on DDPM given in
this article for pansharpening: 1) without directly learning the
spatial and spectral information of HRMS images, transferring
the learning objective of the pansharpening fusion network to
learning the data distribution of the DM can yield outstanding
results; 2) PAN and LRMS images are not required to be
the object of feature extraction; rather, they are employed
as injected conditions to guide the neural network model-
ing HRMS reconstruction procedure. Moreover, for further
enhancing the guidance effect of PAN and LRMS images, the
MIM is proposed. The opening benchmark dataset, including
GaoFen-2, QuickBird, and WorldView-3 images, are used to
evaluate the fusion quality of our PanDiff for reduced- and
full-resolution fusion tests and generalization tests. Through
the qualitative and quantitative comparison, it can be con-
cluded that PanDiff excels in spatial information enhancement

and spectral information fidelity with high robustness. The
reasonable construction of PanDiff is well confirmed in the
ablation experiments.

In the future, how to accelerate the PanDiff sampling of DM
and the more efficient method to handle PAN and LRMS as
injection conditions will be further studied.
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