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Abstract—Gradient compression algorithms are widely used
to alleviate the communication bottleneck in distributed ML.
However, existing gradient compression algorithms suffer from
accuracy degradation in Non-IID scenarios, because a uniform
compression scheme is used to compress gradients at workers
with different data distributions and volumes, since workers with
larger volumes of data are forced to adapt to the same aggressive
compression ratios as others. Assigning different compression
ratios to workers with different data distributions and volumes
is thus a promising solution. In this study, we first derive a
function from capturing the correlation between the number
of training iterations for a model to converge to the same
accuracy, and the compression ratios at different workers;
This function particularly shows that workers with larger data
volumes should be assigned with higher compression ratios1 to
guarantee better accuracy. Then, we formulate the assignment
of compression ratios to the workers as an n-variables chi-
square nonlinear optimization problem under fixed and limited
total communication constrain. We propose an adaptive gradient
compression strategy called DAGC, which assigns each worker a
different compression ratio according to their data volumes. Our
experiments confirm that DAGC can achieve better performance
facing highly imbalanced data volume distribution and restricted
communication.

Index Terms—Distributed Machine Learning, Non-IID, Data-
aware Adaptive Gradient Compression

I. INTRODUCTION

Lossy gradient compression algorithms cause worse model

convergence in Non-IID scenarios compared to the same

setting with IID datasets [2], [3]. For example, the same

gradient compression algorithm [4] (with the hyperparameter

set to 10%) reduces the accuracy by only 0.7% compared to

the bulk synchronous parallel (BSP) [5] as a baseline in IID

scenarios, but the same setting reduces the accuracy by 10.4%
in the Non-IID scenarios [3]. The reason for the accuracy

degradation is that they use the same aggressive gradient com-

pression ratios for different workers, while different workers

usually have different data volumes and distributions [6]–[8].

∗ Jiajun Song has been pre-admitted to Tsinghua Shenzhen International
Graduate School when doing this work.∗∗Corresponding author.

1In this work, the compression ratio is equal to the compressed data divided
by the uncompressed data, referring to the gradient compression part of Sec.
II in [1].

For example, in Flickr-mammal (denoted as Flickr in the

following) [3], the worker with the largest data volume has

78% more samples than the worker with the second largest

data volume (divided by subcontinent). In Google Landmark

Dataset v2 [9], the worker with the largest data volumes has

at least 213% more images than other workers (divided by

continent).

For convenience, we denote workers with large (as well as

small) data volumes as large (small) workers and the number

of local samples as the worker size. Most of the existing

designs of gradient compression algorithms neglect the dif-

ferences in the worker size; For studies that have proposed

adaptive algorithms for adjusting the gradient compression

ratios according to differences in the data distributions (like

SkewScout in [3]), large workers still use the same aggressive

compression ratios as small workers, and a lot of critical

information that can speed up the convergence is lost when

transmitting gradients.

Based on a measurement study, we reveal the following

insights for designing a data-aware gradient compression strat-

egy. First, the uniform compression strategy is not optimal in

a communication-constrained Non-IID environment because

workers with different data distributions and volumes expect

different compression ratios. Second, to converge to the same

accuracy, the gradient compression strategy that sets a higher

compression ratio for workers with larger local training sam-

ples, can reduce a certain amount of training time compared to

the uniform compression. Based on these insights, we propose

to design an adaptive gradient compression algorithm accord-

ing to the worker size to achieve the optimal compression ratio

setting with fixed and limited communication costs.

The technical challenge in designing this algorithm is: given

the total amount of communication, how to determine the

compression ratio of each worker? To answer this question, we

first derive the convergence rate of distributed SGD with error-

feedback (denoted as D-EF-SGD), under relative compression

strategy and different compression ratios. We derive the cor-

relation between the number of training iterations for a model

to converge to the same accuracy, and the compression ratios.

This correlation covers previous studies [10]–[12], where they

restrict each worker with the same compression ratio and



training weight. Secondly, we find the dominant term (i.e.,
the term that mostly affects the convergence rate) under the

limited-communication environment. We denote the number

of workers as n, the compression ratio of the i-th worker as

δi, and the dominant term as Φ(δ1, . . . , δn) (abbreviated as

Φ). Φ is linearly related to the number of iterations for the

model to converge to the same accuracy. Thirdly, we formulate

finding a proper assignment of δi as an n-variable chi-square

nonlinear optimization problem with one constraint. Since it is

not possible to solve this problem directly with the Lagrange

multiplier method (the optimal solution under this method is

outside the domain of δi), we divide this problem into an n-

variable chi-square nonlinear optimization problem with one

constraint, which can be solved by the Lagrange multiplier

method, and a problem of finding the minimal value of a

one-dimensional function. Finally, we find the optimal δi by

traversing the minimum value of Φ for n cases.

Based on these analyses, we propose DAGC (Fig. 1 is a

graphical illustration), a low-cost data-aware adaptive gradient

compression algorithm that sets different compression ratios

depending on the worker size. We denote the local dataset

size divided by the global dataset size as pi, which is equal

to the training weight of the i-th worker [2], [13]. We have
δi
δj

≈ ( pi

pj
)2/3 in DAGC. This supports the the conclusion of

the measurement study, which suggests that large compression

ratios should be assigned to workers with larger pi. The time

complexity of DAGC to find the optimal δi is O(n).

Our contributions are as follows:

• We experimentally reveal that setting higher compression

ratios to large workers converges faster than the uniform

compression under the fixed and limited communication

volume, saving up to 33.75% iterations for Logistic on

FMNIST.

• We reveal that the D-EF-SGD algorithm using a relative

compressor with uneven compression ratios suffers from

a linear slow-down in Φ in the communication-constraint

Non-IID environment. We propose DAGC by solving an

n-variable chi-square nonlinear asymmetric optimization

problem with a communication constraint, which theoret-

ically achieves the minimum of Φ.

• We employ the DAGC in both the real-world Non-

IID and artificially partitioned Non-IID datasets. The

experimental results confirm the correctness of our theory

and show that the DAGC can save up to 26.19% of

iterations to converge to the same accuracy compared to

the uniform compression.

The remainder of this paper is organized as follows. We

introduce the preliminaries in Sec. II. We empirically demon-

strate a faster convergence shown when large workers are set

high compression ratios in Sec. III. We describe the optimal

compression ratios formulation and propose DAGC in Sec. IV.

We show experimental results in Sec. V. We discuss the related

work in Sec. VI, and present the conclusion in Sec. VII.
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Fig. 1: High-level design of DAGC. DAGC sets different

compression ratios to workers depending on the worker size.

Large workers (i.e., the workers with large data volumes

and similarly to small and medium workers) are assigned

conservative compression ratios, and small workers adopt

aggressive compression ratios. The bar chart of the number

of samples owned by each worker refers to Fig. 13 in [3].

II. PRELIMINARIES

We focus on distributed ML in the data-parallel mode via

D-EF-SGD algorithms with relative compressors in Non-IID

scenarios. We give a brief description of distributed ML, Non-

IID, gradient compression, and relative compressors in turn

and highlight the focus of this study.

Distributed ML: We consider the distribution problem in this

work.

f∗ := min
x

[
f(x) :=

n∑
i=1

pifi(x)

]
,

where the objective function f is split among n terms fi, i ∈
{1, 2, . . . , n}, and pi is the training weight of the i-th worker

such that pi ≥ 0 and
∑n

i=1 pi = 1. For convenience, we set

the serial number of workers according to the training weight2,

which means pi ≥ pi+1, ∀i ∈ {1, 2, . . . , n− 1}.

Non-IID: The Non-IID scenario refers to the size and clas-

sification of datasets stored by each worker on distributed

workers, which is a primary challenge in modern DML.

Some workers have more samples and categories, while others

have fewer. This phenomenon is usually due to the workers’

geographical location and user-oriented differences. Skewed

distribution of data labels across devices/locations is a com-

mon type of Non-IID [3], which is considered in this work. In

the theoretical analysis, we use ζ to measure the size of data

heterogeneity, following Assumption 4 in [10].

Gradient Compression: Referring to the compression strat-

egy [14], this technique can be divided into (i) quantization

2The following part of the paper also maintains the order of the training
weight.



[15]–[17], which maps high precision to low precision, thereby

reducing the number of bits transmitted; (ii) sparsification [18],

[19], which keeps only some elements of the gradient, and

set the rest to 0; (iii) low-rank [20], which decomposes the

gradient matrix to obtain two or more low-rank matrices.

D-EF-SGD with relative compressors: Relative compressors

are very popular in sparsification compressors [10]. We denote

the compression ratio as δ and the relative compressor as Cδ .

Cδ is a mapping: Rd → R
d, having the property:

ECδ
‖Cδ(x)− x‖2 ≤ (1− δ)‖x‖2.

D-EF-SGD with relative compressors [13] and distributed

quantized SGD (D-QSGD) [21], [22] are two dominant

compressors in modern distributed ML. D-EF-SGD has two

advantages in communication-constrained Non-IID scenarios.

Firstly, it can achieve lower compression ratios3 (i.e., trans-

ferring less information), which is beneficial for resource-

constrained scenarios. Secondly, D-EF-SGD is less dependent

on ζ and therefore more suitable for high-skewness Non-IID

scenarios [10]. For these reasons, we focus on D-EF-SGD with

relative compressors.

III. MOTIVATING EXAMPLES

In this section, we aim to give some motivating experiments

to demonstrate that 1) A compression strategy that sets differ-

ent compression ratios for workers with different sizes con-

verges faster than uniform compression in a communication-

constrained environment. 2) Strategies that set a higher com-

pression ratio for large workers tend to converge faster than

those for small ones, saving up to 33.75% iterations. To this

end, We propose two non-uniform compression strategies:

1) Non-uniform compression I gives a higher compression
ratio to the large worker and a lower compression ratio

to small workers; 2) Non-uniform compression II gives a
lower compression ratio to the large worker and a higher

compression ratio to small workers.

Empirically, we conduct both Image Classification (Logistic

on Fashion-MNIST, abbreviated as FMNIST [26]) and Speech

Recognition (LSTM on Speech Commands, abbreviated as

SCs [27]) tasks to ensure the generality of the experimental

results. We dichotomize the workers into large and small
workers in order to better investigate the experimental results.

We set 11 workers, consisting of one large worker, whose

local dataset accounts for 50% of the global dataset, and

10 small workers, whose datasets each account for 5%. In

these experiments, communication is constrained (the average

compression ratio referring to the aggressive compression

ratio kmin = 0.1% in the appendix experiments in [19])

and the total communication volume is consistent (i.e., fixing∑n
i=1 δi).

3The smallest compression ratio of D-QSGD can be 1
32

[23], [24], nearly
3.4%, while the compression ratio of spasification can be less than 0.1% [25].
Meanwhile, the compression ratio of D-QSGD is discrete, and this makes
adaptively adjusting ratios more complicated. This issue is also discussed in
the design of DC2 [1].

(a) Logsitic@FMNIST (b) LSTM@SCs

Fig. 2: Convergence rate when using different compression

strategies during the training of Logistic@FMNIST (a) and

LSTM@SCs (b). Non-uniform compression scheme I (as well

as scheme II) gives a higher (lower) compression ratio to the

worker with large data volumes, and uniform compression

gives each worker the same compression ratio. Non-uniform

compression scheme I perform the best among the three

strategies.

Logistic on FMNIST: Fig. 2(a) shows that the Non-uniform

compression I (δ1 = 1%, and δi = 0.01%, i ∈ [2, n])
achieves faster in the early iterations than two other strategies.

To converge to the same accuracy (80%), the Non-uniform

compression I (δi = 0.1%, i ∈ [1, n]) can reduce up to

33.75% of the number of iterations (from 1, 600 iterations to

1, 060 iterations) compared to uniform compression. FMNIST

converges more easily, and a compression ratio of 0.1% cor-

responds to the conservative compression, under which Non-

uniform compression I performs optimally and Non-uniform

compression II (δ1 = 0.01%, and δi = 0.11%, i ∈ [2, n])
performs worst.

LSTM on SCs: Fig. 2(b) shows that the model using non-

uniform compression strategy I converge the fastest under the

condition that the communication volume is fixed. To converge

to the same accuracy (32%), Non-uniform compression I can

reduce up to 17.59% and 11.44% of training time compared

to uniform compression (from 43, 200 iterations to 35, 600
iterations) and Non-uniform compression II (from 40, 200
iterations to 35, 600 iterations), respectively. The SCs dataset

is more challenging to converge than FMNIST and CIAFR-

10, and a compression ratio of 0.1% is extremely aggressive

for SCs. We can see that the training has not fully converged

after 50, 000 iterations. Under such conditions, Non-uniform

compression I and II both perform better than uniform com-

pression. Detailed compression ratios are the same as Logistic

on FMNIST.

In summary, experiment results shown above confirm the

fact that uniform compression is not the optimal strategy when

facing the difference in worker size. Instead, the proposed

strategy that assigns higher compression ratios to large work-
ers is an effective approach for improving training speed.

IV. THEORETICAL ANALYSIS

In this section, we solve the core challenge in this study:

Given the total amount of communication, how to theoret-



Algorithm 1: D-EF-SGD with the relative compressor

and different compression ratios

Input: number of workers n, initial parameters x0,

step-size γ, relative compressor C, initial local

error ei0 = 0d, training weight pi, compression

ratios δ1, . . . , δn
Output: xT

1 for t = 0, . . . , T − 1 do
/* Worker side */

2 for i = 1, . . . , n do
3 Download xt from the server;

4 gi
t := gi(xt);

5 Δ̂i
t := Cδi(eit + gi

t);

6 eit+1 := eit + gi
t − Δ̂i

t;

7 Upload Δ̂i
t;

8 end
/* Server side */

9 Gather all Δ̂i
t;

10 xt+1 := xt − γ
∑n

i=1 piΔ̂
i
t;

11 Broadcast xt+1 to all workers

12 end
13 Return xT ;

ically determine the compression ratio of each worker?
First, we show the pseudo-code of D-EF-SGD with the

relative compressor and different compression ratios (denoted

as Algorithm 1).
Second, we derive the convergence rate of Algorithm 1,

which shows the correlation between the number of iterations

for the model to converge to the same accuracy and δi, con-

sidering the non-convex, convex, and strongly convex cases.

(Theorem 1, 2, 3 in Sec. IV-B and the proof in Sec. IV-F)
Third, we analyze the convergence rate and find the domi-

nant term Φ(δ1, . . . , δn). (Sec. IV-C)
Fourth, we derive the optimal δi by solving the minimum

of Φ(δ1, . . . , δn), which is an n-variable chi-square nonlinear

optimization problem with one constraint, i.e., under fixed and

limited total communication constrain. (Theorem 4 in Sec.

IV-D and the proof in Sec. IV-G)
Finally, we propose DAGC based on Theorem 4, which

adaptive assigns δi based on pi and the average compression

ratio. (Algorithm 2 in Sec. IV-E)

A. Regularity assumptions
We follow Assumptions 1-4 as [10]. That is, we assume L-

smooth functions with gradient noise of SGD assumed to have

zero mean and variance σ2. We measure data heterogeneity

with constants ζ2i > 0, Z2 ≥ 1 that bound the variance across

the n workers. We assume objective functions μ-convex in

Theorem 2, 3.

B. Convergence rate of Algorithm 1
Theorem 1 (Non-convex convergence rate of Algorithm 1).

Let f : Rd → R be L-smooth. Then there exists a stepsize

γ ≤ δmin

4LZ
√
nCZ

, where CZ =
∑n

i=1
δmin

δi
p2i , such that at most

O(
σ2
∑n

i=1 p
2
i

ε2
+

√
n(ζ

∑n
i=1

pi√
δi

+ σ
√∑n

i=1 p
2
i )

ε
3
2

√
δmin

+

√
nZ
∑n

i=1
pi√
δi

ε
√
δmin

) · LF0

(1)

iterations of Algorithm 1 it holds Ef(xout) − f∗ ≤ ε, where

F0 ≥ f(x0) − f∗, and xout = xt denotes an iterate xt ∈
{x0, . . . , xT−1}, chosen at random uniformly.

Theorem 2 (Convex convergence rate of Algorithm 1, i.e.,
μ = 0). Let f : R

d → R be L-smooth and μ-convex.

Then there exists a stepsize γ ≤ δmin

14LZ
√
nCZ

, where CZ =∑n
i=1

δmin

δi
p2i , such that at most

O(
σ2
∑n

i=1 p
2
i

ε2
+

√
nL(ζ

∑n
i=1

pi√
δi

+ σ
√∑n

i=1 p
2
i )

ε3/2
√
δmin

+

√
nLZ

∑n
i=1

pi√
δi

ε
√
δmin

) ·R2
0

(2)

iterations of Algorithm 1 it holds Ef(xout) − f∗ ≤ ε,
where R2

0 ≥ ‖x0 − x∗‖, and xout = xt denotes an iterate

xt ∈ {x0, . . . , xT−1}, chosen at random uniformly.

Theorem 3 (Strong convex convergence rate of Algorithm

1, i.e., μ > 0). Let f : R
d → R be be L-smooth and μ-

convex. Then there exists a stepsize γ ≤ δmin

14LZ
√
nCZ

, where

CZ =
∑n

i=1
δmin

δi
p2i , such that at most

Õ(
σ2
∑n

i=1 p
2
i

με
+

√
nL(ζ

∑n
i=1

pi√
δi

+ σ
√∑n

i=1 p
2
i )

μ
√
δminε

+

√
nLZ

∑n
i=1

pi√
δi

μ
√
δmin

)

(3)

iterations of Algorithm 1 it holds Ef(xout) − f∗ ≤ ε,
and xout = xt denotes an iterate xt ∈ {x0, . . . , xT−1},

chosen at random with probability proportional to (1 −
min

{
μγ
2 , δmin

4

}
)−t.

In the following analysis of the convergence rate, we mainly

focus on Theorem 3, and the rest are similar.

C. Analysis of convergence rate of Algorithm 1

To simplify the analysis, we define a n-variable function

Φ(δ1, . . . , δn) =

∑n
i=1

pi√
δi√

δmin
, and add an extra assumption

denoted as Assumption*, which applies within the context

of this work.

Assumption*: In the communication-constraint Non-IID en-

vironment, we assume that the order of magnitude of

(
∑n

i=1
pi√
δi
)ζ is greater than

√∑n
i=1 p

2
iσ.

This assumption applies to the communication-constraint

Non-IID environment, which is the scope of this work. In this

case, firstly, because gradient compression suffers from accu-

racy degradation in Non-IID scenarios, data heterogeneity ζ is

not orders of magnitude lower than gradient noise σ. Second,



δi increases ζ by an order of magnitude. So Assumption*
applies to this work.

We analyze the convergence rate in two cases:

• Without gradient noise (σ = 0): Algorithm 1 converges

sublinearly at the rate of O(
√
nLζ
μ
√
ε
Φ(δ1, . . . , δn)). Given ζ > 0,

Φ(δ1, . . . , δn) directly affects the convergence.

• With gradient noise (σ 
= 0): When ε is a higher order

infinitesimal of δmin, it converges at rates O(
σ2 ∑n

i=1 p2
i

με ), in-

dependent of δmin and ζ. When the order of magnitude of ε is

greater than or equal to δmin, the term O(
√
nLζ
μ
√
ε
Φ(δ1, . . . , δn))

has a dominant effect due to Assumption*.

In the following analysis, the scenarios we analyze are

σ = 0 and σ > 0 while ε and δ have the same order of

magnitude cases, where Algorithm 1 converges at the rate of

O(
√
nLζ
μ
√
ε
Φ(δ1, . . . , δn)). That is, in communication-constraint

Non-IID environment, the convergence rate is slowing down

linearly in Φ(δ1, . . . , δn). For the case where ε is a higher

order of δ with σ > 0, previous work has analyzed [11], [12],

[28], and we will not repeat here.

D. The optimal compression ratios

In this subsection, we give the theoretical basis (Theorem
4) to find the optimal compression ratios.

Theorem 4 (Optimal compression ratios). We have the fol-

lowing equation under the condition that the total commu-

nication traffic is determined, i.e.,
∑n

i=1 δi = nδ̄. We set

δj = δmin = min{δ1, . . . , δn} and denote P :=
∑n

i=1 p
2/3
i

Then the minimal of Φ(δ1, . . . , δn) can be divided into two

different cases:

• The first case is j 
= n

Φ(δ1, . . . , δn) ≥ 1

nδ̄j
(pj(1 +Qj) + pnQj(1 +Qj)), (4)

where Qj =
P−p

2/3
j

p
2/3
n

. (4) takes the equality at δj =
nδ̄

Qj+1 and

δi =
nδ̄

Qj+1

p
2/3
i

p
2/3
n

, i 
= j.

• The second case is j = n

Φ(δ1, . . . , δn) ≥ 1

nδ̄
(pj(1 +Qj) + pn−1Qj(1 +Qj)), (5)

where Qj =
P−p

2/3
j

p
2/3
n−1

. (5) takes the equality at δj =
nδ̄

Qj+1 and

δi =
nδ̄

Qj+1

p
2/3
i

p
2/3
n−1

, i 
= j.

E. DAGC

Algorithm 2 provides the pseudo-code of DAGC. DAGC is

designed as follows: 1) it solves for n local optimal solutions

by traversing j in Theorem 4 (δj = min{δ1, . . . , δn}) from 1
to n, and 2) it updates δi, i ∈ {1, . . . , n} when Φ(δ1, . . . , δn)
takes a smaller value. The latest compression ratios are the

optimal parameters.

This function is computationally inexpensive and the results

can be used multiple times. The time complexity required for

one traversal is O(n). For a given Non-IID partition, we only

need to compute the optimal δi assigned to each worker once

Algorithm 2: DAGC

Input: number of workers n, training weight pi,
average compression ratio δ̄

Output: compression ratio δ1, . . . , δn
/* φj is the minimum of Φ(δ1, . . . , δn)

with δj = min{δi} */
1 Initialize φmin = +∞;

2 for j = n, n− 1, . . . , 1 do
3 if j == n then
4 Use the right hand of (5) to calculate φj ;

5 else
6 if pj == pj−1 then

/* If weights are duplicated,
skip this calculation */

7 φj = φmin;

8 else
9 Use the right hand of (4) to calculate φj ;

10 end
11 end
12 if φj < φmin then
13 φmin = φj and update the optimal δ1, . . . , δn;

14 end
15 end
16 Return δ1, . . . , δn;

and use it multiple times. If δ̄ changes into a new compression

ratio, denoted as δ̄new, we can use δi = δi
δ̄new

δ̄
to update the

compression ratios.

F. Proof of Theorem 1, 2, 3

We follow [11] and define a virtual sequence:

x̃0 = x0, x̃t+1 := x̃t − γ

n∑
i=1

pig
i
t.

The error term that indicates the distance from the virtual

sequence to the actual sequence is

x̃t − xt = γ

n∑
i=1

pieit.

We will use the notations F̃t := Ef(x̃t) − f∗, Ft :=
Ef(xt)− f∗, Gt := E‖∇f(xt)‖2, Et =

∑n
i=1 p

2
iE‖eit‖2.

Lemma 1. Let f be L-smooth. If the stepsize γ ≤ 1
4L , then

it holds for the iterates of Algorithm 1:

F̃t+1 ≤ F̃t − γ

4
Gt + γ2L

∑n
i=1 p

2
iσ

2

2
+ γ3nL

2

2
Et. (6)

If f is in addition μ-convex, we have

Xt+1 ≤ (1− γμ

2
)Xt − γ

2
Ft + γ2

n∑
i=1

p2iσ
2 + 3γ3nLEt. (7)



Proof. Similar to the analysis in [10], [11], we have

F̃t+1 ≤ F̃t − γ

4
Gt

+ γ2L

2
E‖

n∑
i=1

piξ
i
t‖2 + γ3L

2

2
E‖x̃t − xt‖2,

Xt+1 ≤ (1− γμ

2
)Xt − γ

2
Ft

+ γ2
E‖

n∑
i=1

piξ
i
t‖2 + 3γ3LE‖x̃t − xt‖2.

With the independent ξit and Assumption 3 in [10], we have

Eξt‖
n∑

i=1

piξ
i
t‖2 =

n∑
i=1

p2iEξt‖ξit‖2 ≤
n∑

i=1

p2iσ
2.

Moreover, we have

E‖x̃t − xt‖2 = E‖
n∑

i=1

pie
i
t‖2 ≤ 4n

n∑
i=1

p2iE‖eit‖2 = nEt.

Finally, We get the desired results.

Lemma 2. It holds

Et+1 ≤ (1− δmin

2
)Et +

2

δmin
(Cζζ

2 + CZZ
2Gt) +

n∑
i=1

p2iσ
2,

(8)

where Cζ = CZ =
∑n

i=1
δmin

δi
p2i .

Proof. With the analysis in [11] and [10], it follows

Eξit,Cδ
‖eit+1‖2 ≤ (1− δ

2
)‖eit‖2 +

2

δ
‖∇fi(xt)‖2 + (1− δ)σ2

≤ (1− δ

2
)‖eit‖2 +

2

δ
(ζ2i + Z2‖∇f(xt)‖2) + σ2,

(9)

and the last inequality is followed by Assumption 4 in [10].

Then we substitute the different compression ratio of the

different workers into Eq. 9 and sum the result:

Et+1 ≤ (1− δmin

2
)

n∑
i=1

p2i ‖eit‖2

+
2

δmin
(

n∑
i=1

δmin

δi
p2i )(ζ

2 + Z2Gt) +

n∑
i=1

p2iσ
2,

where ζ = max{ζ1, . . . , ζn}, δmin = min{δ1, . . . , δn}.

Lemma 3. (Lyapunov function). Let f be L-smooth and γ ≤
δmin

4LZ
√
nCZ

. Then it holds

Ξt+1 ≤ Ξt − γ

8
Gt + γ2L

∑n
i=1 p

2
i δ

2

2
+

γ3

(
L2n

δmin

)(
2Cζζ

2

δmin
+

n∑
i=1

p2iσ
2

)
, (10)

4The inequality follows from the fact that ‖∑k
i=1 ai‖2 ≤ k

∑k
i=1‖ai‖2.

where Ξt := F̃t + bEt, b =
γ3L2n

δmin
. Furthermore, letting f be

L-smooth, μ-convex and γ ≤ δmin

14LZ
√
nCZ

, we have

Ψt+1 ≤
(
1−min

{
γμ

2
,
δ

4

})
Ψt − 1

8L
Gt + γ2

n∑
i=1

p2iσ
2

+γ3

(
12Ln

δmin

)(
2Cζζ

2

δmin
+

n∑
i=1

p2iσ
2

)
, (11)

where Ψt := Xt + aEt with a =
12γ3nL

δmin
.

Proof. For smooth functions, we bring Eq. 6 and 8 into the

right-hand side of Ξt+1 := F̃t+1 + bEt+1.

For convex functions, we bring Eq. 7 and 8 into the right-

hand side of Ψt+1 := Xt+1 + aEt+1, thus completing the

whole proof.

For the non-convex function, we bring Eq. 10 into Appendix

F. Lemma 27 of [10], then Theorem 1 is proven. For the

convex function with μ = 0, we get Eq. 11 into Appendix F.

Lemma 27 of [10], then Theorem 2 is proven. For the strong

convex function with μ > 0, we get Eq. 11 into Appendix F.

Lemma 25 of [10], then Theorem 3 is proven.

G. Proof of Theorem 4

Note that the original problem is equivalent to finding the

local optimal solution of Φ(δ1, . . . , δn) =

p1√
δ1

+...+ pn√
δn√

δmin
under

the constraint
∑n

i=1 δi = nδ̄ and δi > 0, ∀i ∈ {1, . . . , n}.

We divide the proof of Theorem 4 into two steps. First,

the n-variable optimization problem with one constraint is

transformed into a one-variable optimization problem (by Eq.

12). Second, the minimum of the one-variable optimization

problem is solved.

Lemma 4. Suppose that ai, bi > 0, ∀i ∈ {1, . . . , n} with∑n
i=1 ai = A (A is a constant), bi are constants, we have

n∑
i=1

bi√
ai

≥ A− 1
2 (

n∑
i=1

b
2
3
i )

3
2 . (12)

The inequality takes equal if ai = Ab
2
3
i (
∑n

i=1 b
2
3
i )

−1.

Proof. With the equality constrain on ai, we define a

Lagrangian function as follows:

L =

n∑
i=1

bi√
ai

+ λ(

n∑
i=1

ai −A).

By the optimality condition, we have{
∂L
∂ai

= − 1
2bia

− 3
2

i + λ = 0, ∀i ∈ {1, . . . , n}
∂L
∂λ =

∑n
i=1 ai −A = 0

.

By solving system of equations above, we can obtain the

desired result.

With Lemma 4, we can convert Φ(δ1, . . . , δn) into a

one-dimensional function: We assume that δmin = δj ≤



min{δi}, i ∈ {1, . . . , n} \ {j} and set bi = pi if i ∈ [1, j− 1],
otherwise bi = pi+1. We also set ai = δi and A = (nδ̄ − δj).

Φ(δ1, . . . , δn) ≥ pj
δj

+
(P − p

2
3
j )

3
2√

(nδ̄ − δj)δj

, whereP =

n∑
i=1

p
2
3
i ,

(13)

and Eq. 13 holds true if and only if δi = (nδ̄ − δj)p
2
3
i (P −

p
2
3
j )

−1, i 
= j. Since pi is sorted in descending order, min{δi}
equals δn if j ∈ {1, . . . , n − 1}, otherwise min{δi} equals

δn−1.

Note that the minimum of the right-hand side of Eq. 13

depends on the range of δj , we discuss the cases of j ∈ [1, n−
1] and j = n, respectively.

• If j ∈ [1, n− 1], we have

δmin = δj =
(nδ̄ − δj)p

2
3
n

P − p
2
3
j

.

We set Qj =
P−p

2/3
j

p
2/3
n

, j ∈ [1, n− 1] and use δj ≤ min{δi}.

Then we get the range of δj ∈ (0, nδ̄
Qj+1 ]. We set H(δj) =

pj

δj
+

(P−p
2
3
j )

3
2√

(nδ̄−δj)δj
and derive the derivative for H(δj):

H ′(δj) = −pjδ
−2
j −1

2
(P−p

2
3
j )

3
2 [(nδ̄−δj)δj ]

− 3
2 (nδ̄−2δj) < 0.

Thus we get the minimum of H(δj) at δj =
nδ̄

Qj+1 :

H(δj) ≥ H(
nδ̄

Qj + 1
) =

1

nδ̄
(pj(1 +Qj) + pnQj(1 +Qj)).

(14)

We combine Eq. 13 and 14 and complete the first case (j 
=
n) in the proof.

• If j = n, we set Qn =
P−p2/3

n

p
2/3
n−1

and have

min{δi} = δn−1 =
nδ̄ − δn
Qn

.

We get the range of δn is (0,
nδ̄

Qn + 1
]. In this range,

H ′(δj) < 0 (the proof process is the same as j 
= n). We

have

H(δj) ≥ H(
nδ̄

Qn + 1
) =

1

nδ̄
(pn(1+Qn)+pn−1Qn(1+Qn)).

(15)

We combine Eq. 13 and 15 and complete the second case

(j = n) in the proof.

V. EVALUTAION EXPERIMENTS

This evaluation answers the following questions:

• Does DAGC outperform uniform compression in real-world

datasets, if the total compression ratio is limited and fixed?

(Fig. 3 in Sec. V-B)

• Will DAGC perform better as the size distribution becomes

more imbalanced and the compression becomes more aggras-

sively? (Table II in Sec. V-C)

We demonstrate the faster convergence of DAGC in

both real-world Non-IID and artificially partitioned Non-IID

datasets, especially facing the highly imbalanced size distri-

bution and restricted communication.

A. Experimental settings

Environment: Our experiments are implemented on a server

running on Ubuntu 18.04.6 LTS system, which is equipped

with an Intel Xeon Silver 4210 CPU @2.20GHz and 4 Nvidia

GeForce GTX 3090 with 24GB memory. The Python version

is 3.8.12, and other used libraries are all based on the Python

version. We use PyTorch 1.11.0 with CUDA 11.3 as the ML

toolkit.

Non-IID type: We run the experiments in two Non-IID types:

• Artificial Non-IID data partition: To simulate the label

imbalance, we allocate a proportion of the samples of each

label obeying the Dirichlet distribution to each worker and set

the concentration parameter to 0.5. This partitioning strategy

to generate Non-IID is broadly used [30]–[32].

• Real-world datasets: We use Flickr [3] as the

real-world dataset. We download the datasets from

https://doi.org/10.5281/zenodo.3676081,

and divide the images according to the subcontinent they

belong to. Excluding damaged images and network limitations

that prevented downloading images, we get a total of 15
workers, and the data distribution is shown in Fig. 3(a).

Experiment tasks: Table I lists the four types of experimental

settings used in this work, with tasks for both image clas-

sification and speech recognition. The CNN used here is a

convolution neural network with four layers referring to [6].

The VGG-11s is a simplified version of VGG-11 [33] from

[34]. The LSTM has 2 hidden layers of size 128. All these

models remove the batch normalization layer to alleviate the

accuracy loss caused by Non-IID [3]. The dataset for the

Speech Recognition is Speech commands [27] (abbreviated

as SCs). We select the 10 categories with the largest number

of samples in SCs, and 4, 000 samples are taken from each

of these categories, 3, 000 samples as training set and the

remaining 1, 000 samples as test set.

Baselines: We compare DAGC with Top-δ5 and ACCOR-

DION [35]. Top-δ represents transmitting the δ largest value

of gradients (in absolute value), which is a relative gra-

dient compressor widely studied in the field of (adaptive)

gradient compression [11], [19]. ACCORDION is the state-

of-the-art sparsified adaptive gradient compression algorithm,

which compresses the gradient using either Top-δmin or Top-

δmax. If the training is in the critical regime, ACCORDION

uses Top-δmin. Otherwise, ACCORDION uses Top-δmax. For

comparison, we define the value of δmax (as well as δmin) in

ACCORDION as equal to the maximal (minimal) δi in DAGC.

Both baselines adopt the uniform compression strategy.

5This algorithm is also written as ‘Top-k’ in other literature [18], [25].



TABLE I: Summary of the experiment settings used in this work.

Task Model Dataset Non-IID type Quality metric Training iterations Experiment Section

Image Classification
Logistic FMNIST [26] Artificially partitioned Non-IID

Top-1 Accuracy
5000 Sec. III

CNN CIFAR-10 [29] Artificially partitioned Non-IID 20, 000 Sec. V-B
VGG11s Flickr [3] Real-world Non-IID 50, 000 Sec. V-B

Speech Recognition LSTM SCs [27] Artificially partitioned Non-IID Top-1 Accuracy 10, 000 Sec. III, V-B

(a) The label distribution for
Flickr

(b) δ̄ = 10%

(c) δ̄ = 1% (d) δ̄ = 0.1%

Fig. 3: The label distribution for Flickr (a) and convergence

rate when using different compression algorithms during the

training of VGG11s on Flickr with the average compression

ratio δ̄ = 10% (b), 1% (c), 0.1% (d). DAGC outperforms Top-

δ with fixed and limited communication.

The number of workers and the worker size: This setting

is for artificial Non-IID data partition only. We set the number

of workers equal to 10. The worker size does not take a

dichotomous division (used in Sec. III for simplicity). pi is an

arithmetic series. In order to increase the randomness of the

series and to closely match the real-world datasets, we add a

Dirichlet distribution (the concentration parameter is 0.5) to pi,
i ∈ [2, n−1], making it an approximate arithmetic series, still

in descending order. This refers to generating artificially Non-

IID datasets with different worker sizes in Federated Learning

[31], [36]. We define the skew ratio (abbrived as SR) as p1/pn,

to measure the imbalance of datasets.

B. Real-world Non-IID Scenarios

Our experimental results show that the training results of

DAGC outperform Top-δ with the uniform compression in

real-world scenarios with fixed communication volumes.

Fig. 3(a) shows the data distribution of Flickr [3] (divided

by subcontinent), where the skew ratio is 4, 997 (≈ 79958
16 ).

We take out 10 categories with the largest number of images.

Then, we take these 10 kinds of images from these 15 workers

as the training dataset.

TABLE II: Accuracy of different gradient compression al-

gorithms under different SR and average compression ra-

tios δ̄. SR increasing corresponds to the size distribution of

datasets becoming more imbalanced. δ̄ measures the degree

of restricted communication. The results show that DAGC

outperforms Top-δ in both Image Classification and Speech

Recognition tasks especially when the size distribution of

workers is highly imbalanced and the communication is re-

stricted.

Model
@Dataset

SR δ̄ DAGC Top-δ ACCORDION

CNN
@CIFAR-10

10
10% 73.12% 73.37% 73.17%
1% 71.56% 71.97% 71.10%
0.1% 67.40% 66.86% 62.50%

100
10% 72.73% 73.47% 72.64%
1% 72.18% 72.12% 71.41%
0.1% 67.32% 66.04% 62.50%

1, 000
10% 72.60% 72.31% 71.84%
1% 71.84% 71.61% 69.92%
0.1% 67.10% 65.84% 62.24%

LSTM
@SCs

10
10% 75.52% 75.52% 75.57%
1% 73.46% 73.66% 72.33%
0.1% 59.94% 58.83% 53.71%

100
10% 75.11% 74.33% 74.32%
1% 73.49% 74.12% 70.62%
0.1% 59.55% 57.01% 52.56%

1, 000
10% 74.84% 74.42% 74.80%
1% 73.12% 72.57% 70.92%
0.1% 60.56% 57.78% 53.53%

Fig. 3(b) shows that DAGC achieves a faster convergence

rate than Top-δ, with the average compression δ̄ = 10%. To

converge to the same accuracy (64%), DAGC can reduce up

to 23.24% of the number of iterations (from 41, 480 iterations

to 31, 840 iterations) compared to the uniform compression.

Fig. 3(c) shows Top-δ converges faster in the early iterations

but is overtaken by DAGC in the late iterations, with δ̄ = 1%.

DAGC lags behind Top-δ in the early stage probably because

of the loss fluctuation. In the later stage, DAGC shows superior

performance compared to uniform compression, thus achiev-

ing the reversal. DAGC can save up to 26.19% of training

time (from 37, 880 iterations to 27, 960 iterations) with the

same accuracy (43%) in the later stages compared to uniform

compression.

The curve in Fig. 3(d) fluctuates considerably due to too

aggressive compression slowing down the model converging.

Even so, DAGC still outperforms uniform compression in most

of the iterations.

Overall, DAGC surpasses the uniform compression in the

normal compression interval with fixed communication vol-

umes, both in the aggressive and conservative compression

intervals.



C. Artificially Partitioned Non-IID Scenarios

Our experimental results show that DAGC achieves better

performance than both Top-δ and ACCORDION under the

datasets with a high skew ratio. The specific experimental

results are shown in Table II.

Comparison among different skew ratios: With increasing

skew ratios, the advantage of DAGC becomes more obvious in

both tasks. For a skew ratio of 10, the performance of DAGC

is not significantly different from Top-δ and ACCORDION

in both tasks, except when δ = 0.1%. But when SR ≥ 100,

DAGC achieves higher accuracy than Top-δ after the same

number of iterations.

DAGC performs better when the skew ratio is large, because

the reduction of the dominant term Φ is more obvious.

When the skew ratio is small (equal to or less than 10), the

differences between DAGC and Top-δ in the compression ratio

setting and the value of Φ are extremely small, so there is

almost no difference in the accuracy between DAGC and Top-

δ. But when the skew ratio is larger, the compression setting

of DAGC differs greatly from Top-δ, and the reduction of

the dominant term is effectively reflected in the rate of model

convergence. This also explains the superiority of DAGC on

VGG11s@Flickr, as the skew ratio is nearly 5, 000.

Comparison among different δ̄: DAGC converges faster than

Top-δ and ACCORDION with lower δ̄. In CNN@CIAFR-10,

DAGC becomes more superior to uniform algorithms as δ̄
decreases, when SR is fixed. In LSTM@SCs, when the skew

ratio is 1, 000, the same trend occurs. ACCORDION performs

poorly when δ̄ = 0.1%, regardless of the skew ratio and the

task. These results show that DAGC is suitable for highly

constrained communication conditions.

Experimental results are consistent with the theoretical

analysis. As δ̄ becomes smaller, the greater the impact of the

dominant term Φ having on the convergence rate, which fits

better with Assumption* in Sec. IV-C. So DAGC performs

well with limited and fixed communication.

In summary, DAGC performs better on both real-world

Non-IID and aritificially partitioned Non-IID datasets with

highly imbalanced size distribution and limited communica-

tion, which is consistent with our theoretical analysis.

VI. RELATED WORKS

Adaptive gradient compression can adaptively adjust com-

pression parameters used in traditional algorithms [37], [38].

improving their robustness in specific scenarios such as dy-

namic network conditions and data heterogeneity. The work

[35] proposed ACCORDION to identify the current training

stage, improving the model quality. DC2, a network latency-

based compression control system, was proposed in the work

[1] to enable model training to complete on time in a dynamic

network environment. The work [3] proposed SkewScout to

make algorithms robust to Non-IID scenes. This system-level

approach dynamically adjusts the compression ratio based on

the loss difference between workers, which is actually difficult

to measure. This makes SkewScout hard to implement.

Improving algorithm robustness: Some works try to address

the Non-IID quagmire by considering theoretical compression

analysis, which can reduce the reliance on the data hetero-

geneity [22]. The work [10] compared Q-SGD and D-EF-SGD

in Non-IID scenarios and added bias correction to them for

improving their data-depencence. The work [19] theoretical

analysed the robustness of the hard threshold sparsification

algorithm, which only sends absolute gradient values above a

constant hard threshold, and found it to be more robust to the

Non-IID problem compared to Top-δ.

Data-aware methods: There has been work proposing data-

aware node selection in distributed ML. The work [39] pro-

posed a method based on data volumes to select workers

in Federated Learning, which differs from gradient-based

methods [40]. This work experimentally concludes that the

data-volume-based node selection method outperforms the

uniform selection strategy in Non-IID scenarios, suggesting

that allowing large workers to convey more information may

be beneficial. However, there has been no work proposing

data-aware algorithms in the field of gradient compression.

In this work, we propose a data-aware gradient compression

algorithm and give the corresponding theoretical analysis.

VII. CONCLUSION

In this paper, we propose a novel gradient compression

algorithm to be more robust to Non-IID datasets from a new

perspective, i.e., the non-uniformity of the data size. Firstly, we

empirically demonstrate a faster convergence when workers

with larger data volumes are set higher compression ratios.

Secondly, we derive the convergence rate of D-EF-SGD with

a relative compressor and different compression ratios, which

is a linear slow-down at the dominant term Φ. We propose

DAGC, where sets δi
δj

≈ ( pi

pj
)2/3, by solving the minimum

of Φ. DAGC can achieve a faster convergence rate than the

uniform compresssion in a communication-constraint Non-IID

environment, suggesting that we should let the large worker

transfer more information in the communication optimization

problems in Non-IID scenarios. We evaluate DAGC on both

the real-world and artificially partitioned Non-IID datasets.

The evaluation experiments show that DAGC can save up to

26.19% of iterations on Flickr and improve the accuracy by

2.78% on artificially partitioned Non-IID datasets.
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