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Hyperspectral and Multispectral Image Fusion
Using the Conditional Denoising Diffusion
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Shuaikai Shi, Student Member, IEEE, Lijun Zhang, Jie Chen, Senior Member, IEEE

Abstract—Hyperspectral images (HSI) have a large amount
of spectral information reflecting the characteristics of matter,
while their spatial resolution is low due to the limitations of
imaging technology. Complementary to this are multispectral
images (MSI), e.g., RGB images, with high spatial resolution
but insufficient spectral bands. Hyperspectral and multispectral
image fusion is a technique for acquiring ideal images that have
both high spatial and high spectral resolution cost-effectively.
Many existing HSI and MSI fusion algorithms rely on known
imaging degradation models, which are often not available in
practice. In this paper, we propose a deep fusion method based
on the conditional denoising diffusion probabilistic model, called
DDPM-Fus. Specifically, the DDPM-Fus contains the forward
diffusion process which gradually adds Gaussian noise to the high
spatial resolution HSI (HrHSI) and another reverse denoising
process which learns to predict the desired HrHSI from its noisy
version conditioning on the corresponding high spatial resolution
MSI (HrMSI) and low spatial resolution HSI (LrHSI). Once the
training is completes, the proposed DDPM-Fus implements the
reverse process on the test HrMSI and LrHSI to generate the
fused HrHSI. Experiments conducted on one indoor and two
remote sensing datasets show the superiority of the proposed
model when compared with other advanced deep learning-
based fusion methods. The codes of this work will be open-
sourced at this address: https://github.com/shuaikaishi/DDPMFus
for reproducibility.

Index Terms—Image fusion, hyperspectral image, multispec-
tral image, probabilistic model, super-resolution.

I. INTRODUCTION

SPECTRAL imaging allows for the simultaneous capture
of both spatial and spectral information of a scene, pro-

viding light reflectance information beyond human perception.
Benefiting from abundant spectral features, this technique has
been used in a wide-range of applications, including face
recognition [1], object detection [2], remote sensing [3], agri-
culture [4], etc. However, the HSI typically has lower spatial
resolution than the RGB images due to the larger instantaneous
field of view (IFOV) [5]. In practice, it is only possible to
capture either HrMSI or LrHSI in a single imaging shot. This
has a significant impact on the accuracy and reliability of the
analysis results obtained from the captured data. Fortunately,
HSI-MSI fusion [6] can fuse a pair of degraded HrMSI and
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LrHSI to produce the desired HrHSI. This fusion technique
overcomes the limitations of acquiring HrHSI in a single shot
and enables a wider range of applications.

A. Motivation

Classical HSI-MSI fusion approaches generally assume the
parameters of the observation model, i.e., point spread function
(PSF) in the spatial degradation and spectral response function
(SRF) in the spectral degradation, are known. However, in
practice, the degradation processes are complex and the pa-
rameters may be difficult or even impossible to accurately de-
termine [7]. Therefore, the performance of such conventional
models is limited when the degradation models mismatch the
actual system.

Deep learning-based methods have already been introduced
to address the HSI-MSI fusion problem, restore the spatial
and spectral details of HrHSI and yield desired results. These
models use deep neural networks, such as convolutional neural
networks (CNNs) and Transformer [8], to learn the mapping
from (HrMSI, LrHSI) pairs to HrHSI. Thanks to the exten-
sive expressive ability of neural networks, these models can
produce high-definition HrHSI. However, on one hand, the
most of existing fusion networks fuse the input degraded
images to the output HrHSI at one step, which can be further
improved by incorporating multiple iterative models. On the
other hand, the regression-based methods may have restricted
practical generalization ability on the new test data caused
by overfitting. Fortunately, this problem can be alleviated by
introducing generative models, such as the recently proposed
diffusion model [9]. Inspired by these two points, we propose
a novel multi-stage HSI-MSI fusion model.

B. Methodology Overview and Contributions

Recently, the denoising diffusion probabilistic model
(DDPM) [9] has been attracted great attention in the commu-
nity of deep generative models and used for various generative
tasks, e.g., image generation [10] and audio synthesis [11].
Furthermore, the DDPM with extra inputs can be used for
the conditional generation, such as image superresolution
[12], text-to-image generation [13] and image editing [14],
concluding inpainting, colorization and uncropping.

The DDPM learns to produce a clean output from its noisy
version via multiple denoising steps. Specifically, the DDPM
contains two processes, namely, the forward diffusion process
and the reverse denoising process. In the training phase, the
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diffusion process adds independent Gaussian noise to the clean
sample multiple times resulting in the final output tending
towards a standard Gaussian distribution. Then the denoising
process, constructed by a deep neural network, learns the
reverse mapping from noisy data to the oringinal clean data.
Once training is complete, the DDPM can generate new
samples via implementing the denoising process with Gaussian
noise inputs. Moreover, the conditional DDPM introduce an
extra input in the reverse denoising process to guide the model
outputs samples related to this input, e.g., produce a high
resolution image corresponding to the blur input rather than
output an another unrelated image. Inspired by the conditional
DDPM, we propose an HSI-MSI fusion model, called DDPM-
Fus, using the HrMSI and LrHSI as conditional inputs. The
proposed DDPM-Fus fuses the HrMSI and LrHSI by a U-net
architecture and predicts the added Gaussian noises to recover
the spatial details and spectral signatures of the desired HrHSI.

The main contributions of this work are summarized as:
1) We propose a novel HSI-MSI fusion model by adapt-

ing the denoising diffusion probabilistic model to HSI
generation with conditional inputs. Our proposed model
outperforms commonly used discriminative models and
shows great potential for recovering HrHSI.

2) The proposed model, DDPM-Fus, produces the fused
results by multiple iterative denoising that is distin-
guished it from the general deep learning-based single-
step fusion models.

3) We demonstrate the fusion on three public hyperspectral
data and experiment results show the superiority of the
proposed conditional generative model compared to the
regression-based fusion approaches.

The rest of this paper is organized as follows. The related
work is reviewed in Section II. Section III presents the
proposed DDPM-Fus. The fusion experiments conducted on
three HSI datasets are demonstrated in Section IV to show the
effectiveness of DDPM-Fus. Section V concludes this paper
and provides a discussion.

II. RELATED WORK

HSI-MSI fusion has been seen as an effective tool to obtain
the desired HrHSI. In our text, the fusion approaches are
divided into two types, namely, conventional unsupervised
methods, which often use the observed model as priors,
and advanced supervised deep learning-based models, which
usually rely on ground truth HrHSI data for training.

A. Unsupervised HSI-MSI Fusion

Pansharpening algorithms [15] have been extended to the
HSI-MSI fusion. Gram–Schmidt adaptive (GSA) [16] is a
representative pansharpening algorithm based on component
substitution, which uses Gram–Schmidt transformation to sep-
arate the spatial component of the LrHSI that needs to be
substituted by the HrMSI. The generalized Laplacian pyramid-
based hyper-sharpening (GLP-HS) [17] adapts another class
of pansharpening methods to HSI-MSI fusion that uses the
pyramidal decompositions to obtain the high spatial resolution
details in the scene. Then the spatial details are injected into

the LrHSI to obtain the desired HrHSI. Pansharpening-based
fusion methods implement fast and independent of obser-
vation model, however, these methods may produce HrHSI
with coarse spatial details and spectral distortion due to the
simplistic model design.

Subspace representation-based fusion methods usually use
a spectral dictionary to represent all spectral signatures of
the HrHSI and then obtain the corresponding coefficients
by optimizing an objective function. Coupled non-negative
matrix factorization (CNMF) [18] embeds the linear mixing
model (LMM) into the fusion problem and then endmembers
of LrHSI are multiplied by abundances of HrMSI to obtain
the fused result. Some constraints are often used to ensure
the sparsity of the coefficients and the smoothness of the
desired images. Hyperspectral superresolution (HySure) [19]
encourages the smoothness of HrHSI using the total variation
(TV) regularizers on each band. A non-negative structured
sparse representation (NSSR) [20] uses the clustering method
to promote spectral homogeneity. The tensor representation is
also applied to HSI-MSI fusion. The coupled sparse tensor
factorization (CSTF) [21] directly represents the HSI cube
by the Tucker decomposition and constrains the sparsity of
the core tensor. While subspace representation-based fusion
methods can get superior performance over sharpening-based
algorithms, the fact that most of these methods use a linear
representation that limits their use of them.

An alternative to hand-tuning the regularization parameters
is to introduce a neural network to learn prior knowledge
in the HrHSI. An unsupervised sparse Dirichlet-Net (uSDN)
[22] iteratively learns the shared features of abundances in the
LrHSI and HrHSI. A variational autoencoder-like probabilistic
generative model (NVPGM) [23] extends uSDN that global
training of the model parameters. Guide deep decoder (GDD)
[24] learns to produce the desired HSI from noise based on the
deep image prior [25]. It degrades HrHSI using an observation
model and then minimize the errors between outputs and
input images, LrHSI and HrMSI. These unsupervised deep
fusion models can produce more accurate results, however,
these methods usually assume the observation model is known,
resulting in a limitation of their practical use.

B. Supervised HSI-MSI Fusion
Recently, deep learning-based supervised methods have

been introduced to HSI-MSI fusion [26]. Benefiting from the
expressive capacity of neural networks, these models learn
the mapping from a number of paired LrHSI and HrMSI
to the ground-truth images HrHSI in an end-to-end manner.
Once the training is complete, these fusion models have the
generalization ability to fuse other degraded image pairs to
the desired HrHSI. Most deep learning-based methods concen-
trate on exploring the expressive network modules to extract
the high spatial resolution information and precision spectral
signatures, and then fuse them into output images. The deep
pansharpening network (PANnet) [27] with CNNs and the
residual block was proposed to fuse a panchromatic image and
a corresponding MSI. Wang et al. [28] introduced a deep prior
to HSI super-resolution, automatically learning the spatial-
spectral priors in the scene. Hu et al. [29] designed a deep
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TABLE I
THE PROPERTIES OF REPRESENTATIVE FUSION METHODS.

Category Method Ground truth PSF SRF
Pansharpening GSA [16]

% % %
-based GLP-HS [17]

Subspace-based

HySure [19]

%

% %

CNMF [18] ! !

CSTF [21] ! !

NSSR [20] ! !

uSDN [22]
%

% !

Unsupervised deep NVPGM [23] % !

learning-based GDD [24] ! !

PANnet [27]

! % %

Supervised deep HSRnet [29]
learning-based SSRnet [30]

MHF-net [31]
EDBIN [32]

DDPM-Fus (ous)

Forward Diffusion Process

Reverse Denoising Process

··· ···

Conditional generation

H
rH

SI

LrHSI

HrMSI

N
oi

se

Fig. 1. Framework of the proposed DDPM-Fus, including the forward process
and the reverse process. In the forward diffusion process, Gaussian noise is
gradually added to HrHSI X0 over T time steps. In the reverse denoising
process, the neural network µθ(·) learns to recover the spatial details and
spectral signatures of the desired HrHSI by implementing denoising progres-
sively conditioned on two degraded images, Y and Z.

convolutional network with the spatial and spectral attention
mechanisms to perform the fusion task, called HSRnet. In
addition to the one-stage fusion methods mentioned above,
multi-stage models are expected to achieve better performance.
Zhang et al. [30] proposed a three-stage network consisting
of preliminary fusion, spatial and spectral refinement, namely
SSRnet. Xie et al. [31] proposed a physically meaningful
HSI-MSI fusion network (MHF-net) which progressively re-
cover the HrHSI through K-stage networks. Wang et al.
[32] proposed an iterative fusion method to estimate both
the observation model and fusion process, namely enhanced
deep blind hyperspectral image fusion network (EDBIN).
Rather than using known PSF and SRF as in the unsupervised
methods, the deep supervised fusion models leverage the high
capacity of deep neural networks to restore the HrHSI and
achieve state-of-the-art performance. These fusion networks
are independent of the observation model, showing promising
potential for application in practice. In summary, the properties
of several representative fusion methods are shown in Table I.

III. THE PROPOSED DDPM-FUS MODEL

In this section, we present the proposed DDPM-Fus, includ-
ing the problem formulation, forward and backward processes,
objective function, optimization and fast fusion strategy.

A. Problem Formulation

The goal of HSI-MSI fusion is to obtain an HrHSI, X ∈
RL×W×H , benefiting simultaneously from spatial details of
the HrMSI, Z ∈ Rl×W×H , and spectral signatures of the
LrHSI, Y ∈ RL×w×h, where {L,W,H, } and {l, w, h} denote
the channels, widths and heights of high-resolution and low-
resolution image cubes, respectively. It is generally accepted
that, w ≪ W,h ≪ H and l ≪ L, thus it is nontrivial
to perform the image fusion with strong spatial and spectral
resolution differences. The following linear observation model
is adopted by most of the fusion literature [20], [21]:

Y = XBS+Ny,

Z = RX+Nz, (1)

where X ∈ RL×WH , Y ∈ RL×wh and Z ∈ Rl×WH

are 2D matrices unfolding the corresponding 3D tensors of
HrHSI, LrHSI and HrMSI, respectively. B ∈ RWH×WH is the
blurring matrix constructed by the PSF kernel. S ∈ RWH×wh

represents the spatial downsampling operator which is used
combined with the blurring matrix to formulate the spatial
degradation process. R ∈ Rl×L, the SRF matrix, denotes the
spectral merging process. Ny and Nz are two Gaussian noise
matrices, which are independent of the image data.

The objective is recovering X with observations Y,Z. In
the first class of fusion methods, conventional unsupervised
model, B,S and R are often assumed as priors. While in
the second class of fusion methods, supervised deep learning-
based models, several HrHSI are known as the ground truths
for the training of fusion networks. Once the training is
complete, these models perform the fusion process in other
new observation pairs, Y and Z. Our proposed DDPM-Fus
is belonging to the second class methods. We see the HSI-
MSI fusion problem as modeling the conditional probabilistic
distribution p(X|Y,Z). Then one can obtain the desired
HrHSI by sampling from this distribution. Inspired by the ad-
vanced denoising diffusion generative model [9], we build two
processes below to learn the above conditional distribution.

B. Forward Diffusion Process

Following DDPM [9], we use a Markovian chain of length
T with the Gaussian diffusion kernel adding noise to the
HrHSI X.

q(Xt|Xt−1) = N (
√
1− βtXt−1, βtI), (2)

where t ∈ {1, 2, . . . , T}, X0 = X is the ground truth image,
XT is the noisy image at when the end of the forward process,
βt ∈ {β1, β2, . . . , βT } is a sequence of hyperparameters
representing the variance of Guassian noise and I is the
identity matrix.

Star
高亮



4 SUBMISSION TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, 2023

Add 
noise

Interpolate

LrHSI

HrMSI

HrHSI

Noisy image

Channel 
concatenation

2L+l 64

64

64

64

128+256

128+256

64+64
64

64+64 64 L

64

256

64

64

256256

128

128

128

128

64+128

64+128

64+64

Down Sampling 2x

Convolution 3x3Convolution 1x1

Skip connection
Up Sampling 2x

Block copied

Residual block

Attention

128

256
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Current step
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Fig. 2. Structure of the denoising network ϵθ(Xt,Y,Z, t). In each training time step t, we first obtain Xt by adding Gaussian noise to HrHSI X0 and
interpolate LrHSI Y to the same spatial resolution of HrMSI Z. Then, Xt,Z and Yup will be used as network inputs after the channel dimensions are
concatenated. The current step t will be input to each residual block in the network in the form of a time embedding. In the U-net denoising network, there
are a series of convolutional residual blocks, skip connections and attention modules. Last, the network predicts the noise that we add before.

Due to the property of Gaussian distribution, one can
directly obtain the output of each diffusion step by

q(Xt|X0) = N (
√
ᾱtX0,

√
1− ᾱtI) (3)

or Xt =
√
ᾱtX0 +

√
1− ᾱtϵ, (4)

where ᾱt =
∏t

s=1(1− βs) and ϵ ∼ N (0, I). Note that when
T → ∞, q(X∞) = N (0, I).

The forward diffusion is shown at the top of Fig. 1.

C. Reverse Denoising Process

After the forward diffusion process, we use the reverse
denoising process to recover the HrHSI from the noise input
and the pairs of LrHSI and HrMSI. Specifically, the reverse
process maps from the standard Gaussian noise to the HrHSI
X and we assume the inverse of the above forward diffusion
kernel (2) is another Gaussian as

pθ(Xt−1|Xt) = N (µθ(Xt,Y,Z, t), σ2
t I), (5)

where µθ(·) is constructed by a deep neural network param-
eterized by θ and σ2

t ∈ {σ2
1 , σ

2
2 , . . . , σ

2
T } is a sequence of

hyperparameters, which will be given in the Sec. III-D.

D. Objective Function

In this subsection, we present the objective function of the
proposed DDPM-Fus. The evidence lower bound (ELBO) of
the log-likelihood is

L(θ) = −
T∑

t=1

KL (q(Xt−1|Xt,X0)||pθ(Xt−1|Xt)) , (6)

where KL(·||·) denotes the Kullback-Leibler divergence be-
tween two distributions. The detailed derivation of (6) will
be given in the APPENDIX. q(Xt−1|Xt,X0) is the posterior
distribution which can be deduced to

q(Xt−1|Xt,X0) ∝ q(Xt|Xt−1,X0)q(Xt−1|X0)

= q(Xt|Xt−1)q(Xt−1|X0). (7)

Since the conditional distribution (2) and the prior distribution
(3) here are both Gaussian, the posterior distribution is also
Gaussian due to the self-conjugate nature of the Gaussian
distribution [33]. Thus the above distribution (7) is

q(Xt−1|Xt,X0) = N (µ̃t(Xt,X0), β̃tI), (8)

where

µ̃t(Xt,X0) =

√
1− βt(1− ᾱt−1)

1− ᾱt
Xt +

√
ᾱt−1βt

1− ᾱt
X0, (9)

β̃t =
1− ᾱt−1

1− ᾱt
βt. (10)
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Algorithm 1: Training algorithm of DDPM-Fus
Input: paired training data: (Y, Z, X0);
hyperparameter sequence: {β1, β2, . . . , βT },

1 Initialize θ randomly;
2 repeat
3 ϵ ∼ N (0, I);
4 t ∼ U(1, T );
5 Compute the noisy image by (4):

Xt =
√
ᾱtX0 +

√
1− ᾱtϵ

6 Compute the gradient of (15) w.r.t. θ:
∇θ∥ϵ− ϵθ(Xt,Y,Z, t)∥;

7 Update θ via Adam optimizer [34].
8 until training phase end;

The KL divergence in the ELBO (6) is tractable because all
distributions disturbed here are independent Gaussian. Thus
the KL divergence at one-time step can be written by

Lt(θ) = −KL(q(Xt−1|Xt,X0)||pθ(Xt−1|Xt,Y,Z))

= − 1

2σ2
t

∥µ̃t(Xt,X0)− µθ(Xt,Y,Z, t)∥2F + C, (11)

where C is a constant independent of θ including some
untrainable parameters. Following [9], we can use the rela-
tionship (4) eliminating X0 in (9) as

µ̃t(Xt,X0) =
1√

1− βt

(
Xt −

βt√
1− ᾱt

ϵ

)
. (12)

Meanwhile, the prediction of the neural network
µθ(Xt,Y,Z, t) can be writen as the same form

µθ(Xt,Y,Z, t)

=
1√

1− βt

(
Xt −

βt√
1− ᾱt

ϵθ(Xt,Y,Z, t)

)
. (13)

where ϵθ(·) is another form of µθ(·), which predicts the noise
added in the forward process and will be introduced in the
next subsection.

Thus the KL divergence (11) can be further simplified to

Lt(θ) = − β2
t

2σ2
t (1− βt)(1− ᾱt)

∥ϵ− ϵθ(Xt,Y,Z, t)∥2F + C.

(14)
In the training phase, we set σ2

t = β̃t, so C = 0. Last,
we can optimize the ELBO (6) step-by-step along time and
in each step we focus on the simple loss function ignoring
hyperparameter coefficients as

Lsimple(θ) = ∥ϵ− ϵθ(Xt,Y,Z, t)∥pp, (15)

where typically p = 1 or 2 for using ℓ1 and ℓ2 loss. In our
experiments, we use ℓ1 loss and the ablation study about p
will be given in the Sec. IV-E.

E. Network Optimization

Next, we construct the conditional denoising network ϵθ(·)
using the U-net architecture. Overall, the network is shown in
Fig. 2. Inputs of the U-net consists of 4 parts, {Xt,Y,Z, t}.
We have already compute Xt by (4) in the forward diffuison
process. Then we interpolate LrHSI Y using bicubic method
to the same spatial resolution as HrMSI Z and concatenate

Algorithm 2: Fusion of DDPM-Fus
Input: paired test LrHSI and HrMSI: (Y′, Z′);
the sub-sequence of {1, 2, . . . , T} is denoted as
{τ1, τ2, . . . , τd = T}

1 X′
T ∼ N (0, I);

2 for t = τd, . . . , τ1 do
3 ϵ ∼ N (0, I) if t > 1, else ϵ = 0
4 Compute the estimated noise by ϵθ(X

′
t,Y

′,Z′, t);
5 Sample the denoising output X′

t−1 from DDIM [35]
sampler (18), (19) and (20);

6 end

it with HrMSI and noisy image along the channel dimension.
These data preprocess can be formulated by

Yup = Bicubic(Y) ↑S×, (16)
IN = [Xt,Z,Yup]. (17)

For simplicity, assuming that the spatial resolution of X
is divisible by Y, S = W/w = H/h. ↑S× represents
increasing the spatial resolution of LrHSI S times by bicubic
interpolation. [·] denotes the concatenation operator. IN is
the data input of the following denoising network. A U-
net is used here to implement the denoising process, which
consists of several convolutional residual blocks and attention
layers. For clarity, the channel numbers of some main feature
maps have been marked on the corresponding layers and the
forward computation process is illustrated in Fig. 2. Besides,
the current time step t is considered as another condition and is
input to each residual block in the form of learned embedding
vectors, such as the positional embedding in the Transformer
[8]. To specify, the training process of the proposed DDPM-
Fus is summarized in Algorithm 1.

F. DDPM-Fus with Fast Sampling
Once training is complete, we can obtain fusion results on

the test data by implementing the reverse denoising process.
Instead of sampling from (5) step-by-step, we get the fused
results via another reverse sampler to reduce the fusion time.
This sampler was proposed in [35], where a non-Markovian
forward process was designed and allowed to skip steps in the
implementation of the reverse process, namely denoising dif-
fusion implicit models (DDIM). Specifically, the new forward
process can be formulated by

qσ(Xt−1|Xt,X0)

=N (
√
ᾱt−1X0 +

√
1− ᾱt−1 − σ2

t ·
Xt −

√
ᾱtX0√

1− ᾱt
, σ2

t I).

(18)

Based on the above relation, we can use the estimated values
of X0 and noises to implement the reverse process as

X0 ≈ Xt −
√
1− ᾱtϵθ(Xt,Y,Z, t)√

ᾱt

, (19)

Xt −
√
ᾱtX0√

1− ᾱt
≈ ϵθ(Xt,Y,Z, t). (20)

To specify, we can obtain the fused results on the test data
by implementing the reverse denoising process concluded in
Algorithm 2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Some benchmark RGB images in datasets, CAVE: (a) CD, (b) flowers,
(c) glass tiles and (d) oil painting, Chikusei: (e) region2, (f) region6 and (g)
region11, Pavia Center: (h) Pavia Center.

TABLE II
QUANTITATIVE METRICS OF THE COMPARISON METHODS ON THE 10 TEST

IMAGES FROM THE CAVE DATASET. THE BEST RESULTS ARE IN BOLD,
WHILE THE SECOND BEST METHODS ARE UNDERLINED.

Methods PSNR SAM ERGAS SSIM

PANnet 30.68 13.68 1.11 0.864
HSRnet 41.05 7.94 0.41 0.975
SSRnet 41.73 8.17 0.41 0.975
MHFnet 36.46 22.12 1.64 0.951
EDBIN 40.68 8.96 0.48 0.969

DDPM-Fus 43.66 5.69 0.34 0.986

Ideal value +∞ 0 0 1

IV. EXPERIMENTS

We demonstrate the experimental results of our proposed
DDPM-Fus conducted on the CAVE [36]1 dataset and two
remote sensing datasets, namely, Chikusei [37]2 and Pavia
Center3. For a fair comparison, several algorithms of su-
pervised deep learning-based HSI-MSI fusion methods are
implemented with their open-source code, including PANnet
[27] 4, HSRnet [29]5, SSRnet [30]6, MHFnet [31]7 and EDBIN
[32] 8.

A. Data Description

The first dataset is CAVE collected by Apogee Alta U260
camera contains 32 scenes of size 512× 512 with 31 spectral
bands covering a wavelength range of 400 nm to 700 nm at
10 nm steps. Followed by [31] and [29], we set 20 images as
training data and the other 12 images as test data. The second
database is Chikusei acquired by the Headwall Hyperspec-
VNIR-C imaging sensor over Chikusei, Japan. The original

1https://www.cs.columbia.edu/CAVE/databases/multispectral/
2http://naotoyokoya.com/Download.html
3https://rslab.ut.ac.ir/data
4https://xueyangfu.github.io/projects/iccv2017.html
5https://github.com/liangjiandeng/HSRnet
6https://github.com/hw2hwei/SSRNET
7https://github.com/XieQi2015/MHF-net
8https://github.com/wwhappylife/Deep-Blind-Hyperspectral-Image-Fusion

image comprises 128 bands ranging from 363 nm to 1018 nm
with a ground sampling distance (GSD) of 2.5 m, and it is
2517 × 2335 in spatial size. For convenience, we choose 16
non-overlapped subregions from the raw data for the study,
each of which has a 512 by 512 size. We set 10 images as
training data and other 6 images as test data. The last image
we used is acquired by the ROSIS sensor over Pavia, Italy,
which contains 1096 × 715 pixels and 102 bands covering
from 430 nm to 860 nm. A 1088×448 sub-image and another
1088×192 region from it are selected as the training data and
test data, respectively, for the evaluation. We refer to the above
data as the ground truth (GT) of HrHSI to compare the fusion
performance. Several benchmark images in these datasets are
illustrated in Fig. 3.

Following [23], [29] and [38], we generate the observed
LrHSI by directly averaging the 32 × 32 spatially disjoint
blocks in the HrHSI. For the CAVE, Chikusei and Pavia Center
datasets, we use the SRF of Nikon D700 camera9, LANDSAT-
810 and an IKONOS-like sensor to simulate the HrMSI via
HrHSI, respectively. The HrMSI of the CAVE dataset has three
bands that correspond to the red, green, and blue channels,
whereas the HrMSI of the other two remote sensing datasets
has four bands, one more NIR band than the former.

B. Experimental Setup

1) Hyperparameter Settings: The same architecture of the
proposed DDPM-Fus is used for fusion three datasets with
the diffusion time step T is set to 2000, which is shown in
Fig. 2. The hyperparameter sequence {β1, β2, . . . , βT } is set to
a sequence with uniform growth from 0 to 0.01. The number
of training iterations is set to 250k and the Adam optimizer
[34] is adopted here. In the training phase, we use the cosine
annealing learning schedule [39] with the cycle set to 50k steps
to promote the convergence, where the maximum learning rate
is set to 0.0001. We perform the fusion task on one NVIDIA
GeForce RTX 3090 GPU with 24GB memory. Due to the
memory limitation, we divide the training images into small
patches with the size of 64×64 and the batch size is set to 8.

2) Performance Metrics: We use the peak signal-to-noise
ratio (PSNR), the relative dimensionless global error in synthe-
sis (ERGAS) [40], the spectral angle mapper (SAM), and the
structure similarity to quantitatively evaluate the fused results
of comparison methods (SSIM) [41]. PSNR is equivalent to
the root mean squared error (RMSE). ERGAS is the average
relative RMSE of each channel, which can be used to eliminate
intensity effects. SAM compares the similarity of spectra in
radian units. The structural similarity between the ground truth
and the estimated image is measured using the SSIM criterion,
which is widely used in image processing. All evaluation
criteria are assessed in the 8-bit range, i.e., [0-255].

C. Experiments on the Indoor Dataset

Table II shows the average performance metrics on the
CAVE dataset for all comparison models. Overall, PANnet

9https://www.maxmax.com/spectral response.htm
10https://landsat.gsfc.nasa.gov/article/preliminary-spectral-response-of-the-

operational-land-imager-in-band-band-average-relative-spectral-response
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(a) PANnet
(29.56/9.51)

(b) HSRnet
(32.44/5.66)

(c) SSRnet
(31.97/7.04)

(d) MHFnet
(30.16/17.30)

(e) EDBIN
(29.11/7.32)

(f) DDPM-Fus
(32.45/4.95)

(g) GT
(PSNR/SAM)
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Fig. 4. (a-g) The 21st band (600 nm) of fused HrHSI (CD in the CAVE dataset) obtained by the testing methods, where a ROI zoomed in 9 times (bottom-left)
and the corresponding residual maps (bottom-right) are shown for detail visualization. PSNR and SAM are also listed for comparison. (h) The corresponding
RMSE along with spectral bands.

(a) PANnet
(31.82/18.07)

(b) HSRnet
(42.73/12.22)

(c) SSRnet
(42.76/11.11)

(d) MHFnet
(32.16/23.75)

(e) EDBIN
(42.09/11.97)

(f) DDPM-Fus
(44.20/8.48)

(g) GT
(PSNR/SAM)
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Fig. 5. (a-g) The 21st band (600 nm) of fused HrHSI (flowers in the CAVE dataset) obtained by the testing methods, where a ROI zoomed in 9 times
(bottom-left) and the corresponding residual maps (bottom-right) are shown for detail visualization. PSNR and SAM are also listed for comparison. (h) The
corresponding RMSE along with spectral bands.

and HSRnet as one-stage fusion methods produce poor results.
Compared with them, the multi-stage fusion methods show

competitive performance, especially SSRnet, bringing 0.68 dB
improvement in PSNR compared to HSRnet. The existing
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(a) PANnet
(26.22/7.04)

(b) HSRnet
(37.67/2.60)

(c) SSRnet
(38.74/2.51)

(d) MHFnet
(38.09/3.16)

(e) EDBIN
(38.73/2.99)

(f) DDPM-Fus
(39.25/2.42)
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Fig. 6. (a-g) The 73rd band (734 nm) of fused HrHSI (region2 in the Chikusei dataset) obtained by the testing methods, where a ROI zoomed in 9 times
(bottom-left) and the corresponding residual maps (bottom-right) are shown for detail visualization. PSNR and SAM are also listed for comparison. (h) The
corresponding RMSE along with spectral bands.

TABLE III
QUANTITATIVE METRICS OF THE COMPARISON METHODS ON THE 6 TEST IMAGES OF THE CHIKUSEI AND THE TEST IMAGE OF THE PAVIA CENTER

DATASET. THE BEST RESULTS ARE IN BOLD, WHILE THE SECOND BEST METHODS ARE UNDERLINED.

Methods
Chikusei Pavia Center

PSNR SAM ERGAS SSIM PSNR SAM ERGAS SSIM

PANnet 28.17 4.31 0.76 0.896 31.63 6.83 0.56 0.940
HSRnet 38.87 2.00 0.42 0.972 44.21 3.37 0.22 0.982
SSRnet 39.66 1.89 0.39 0.974 45.11 2.98 0.19 0.986
MHFnet 39.04 2.33 0.44 0.963 42.82 4.37 0.26 0.977
EDBIN 38.70 2.89 0.43 0.973 45.35 2.93 0.18 0.987

DDPM-Fus 40.25 1.86 0.41 0.975 45.39 3.01 0.19 0.986

Ideal value +∞ 0 0 1 +∞ 0 0 1

multi-stage fusion models usually contain several stages, such
as coarse fusion, spatial correction and spectral recovery in
SSRnet, or scores of fusion steps in MHFnet and EDBIN. Our
proposed DDPM-Fus have thousands of fusion stages and we
obtain the approximated fused results by the DDIM sampler
[35]. Unsurprisingly, the proposed DDPM-Fus outperforms all
other fusion models and improves the PSNR by 1.93dB over
the second-best model, SSRnet, on the CAVE dataset.

Fig. 4 and Fig. 5 show the fused HrHSI in the 21st band (600
nm) for CD and flowers, respectively. Two regions of interest
(ROIs) are highlighted for comparing detailed differences of
all testing methods. It can be observed that there are prominent
artifacts in the fused image provided by PANnet and EDBIN
as shown in Fig. 4 (a) and (e). Besides, the progressive fusion
methods, SSRnet and DDPM-Fus, obtain lower error maps
than other methods as shown in 5 (c) and (f), respectively.

Clearly, the proposed DDPM-Fus produces the best fusion
results of the target HrHSI and corresponding lower absolute
error maps than other comparison models. The band-by-band
root mean squared error (RMSE) of all methods on these two
images are shown in Fig. 4 (h) and Fig. 5 (h) to compare the
reconstruction in each band obtained by the testing algorithms.
These RMSE results further demonstrate the superiority of our
proposed model in spectral reconstruction.

D. Experiments on the Remote Sensing Dataset

We conduct two remote sensing datasets to further evaluate
the fusion performance. Remote sensing data, in contrast to
indoor images, have lower spatial resolution and typically
contain several spectral signatures in a single image. The
quantitative metrics of all testing methods over the Chikusei
and Pavia Center datasets are shown in Table III. As can
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(a) PANnet
(31.63/6.83)

(b) HSRnet
(44.21/3.37)

(c) SSRnet
(45.11/2.98)

(d) MHFnet
(42.82/4.37)

(e) EDBIN
(45.35/2.93)

(f) DDPM-Fus
(45.39/3.01)

(g) GT
(PSNR/SAM)
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Fig. 7. (a-g) The 31st band (558 nm) of fused HrHSI (test image in the Pavia
Center dataset) obtained by the testing methods, where a ROI zoomed in 9
times (top-left) and the corresponding residual maps (bottom-left) are shown
for detail visualization. PSNR and SAM are also listed for comparison.

be seen, the SAM results tested on these two datasets are
significantly smaller than the same metrics evaluated on the
CAVE dataset in Table II. Our proposed DDPM-Fus also
obtains the best results in terms of the PSNR and is almost
optimal in other indicators. In addition, for visual comparison,
we present one band in each fused image, as seen in Fig. 6
and Fig. 7. Last, the corresponding RMSE in each band is

500 600 700 800
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DDPM

Fig. 8. RMSE along with spectral bands for the comparison methods on the
Pavia Center test data.

also shown in Fig. 6 (h) and Fig. 8 and the multi-stage fusion
models, such as SSRnet, EDBIN and ours DDPM-Fus are
preferred to the one-stage fusion model, PANnet and HSRnet.

E. Model Discussion

1) Complexity Analysis: The computational complexity of
comparison models heavily depends on the number of pa-
rameters and convergence. We list the number of parameters
of comparison models, the floating-point operations (FLOPs)
when computing one image through each model once and
corresponding training time for the three datasets is listed
in Table IV. Benefiting from using the DDIM sampler, our
proposed DDPM-Fus can achieve the performance of multi-
stage fusion models by fusing only once. Meanwhile, as can
be seen in Table IV, FLOPs of our model and HSRnet are in
the same order of magnitude.

2) Ablation Study: We also perform the fusion task with
different loss functions and sampling steps to investigate the
optimal setting. We implement an experiment conducted on
the CAVE dataset and PSNR metrics are shown in Table V.
The results show that the ℓ1 loss is superior to ℓ2. Besides,
the fusion performance is better when the number of sampling
steps in the test phase is set to 1, 2 or 5. Considering the
efficiency of the execution, we set the sampling step to 1.

V. CONCLUSION

In this article, we proposed a novel supervised HSI-MSI
fusion model based on the conditional denoising diffusion
probabilistic model, namely DDPM-Fus. The DDPM-Fus ex-
ploit the spatial details and spectral characteristics in the
HrHSI via learning the conditional generative model. A U-
net is used to learn the noise added in the forward diffusion
process. After the DDPM-Fus is trained, the desired HrHSI in
the test data can be generated by performing the conditional
noise reduction through the reverse process step-by-step. The
results of experiments conducted on three publicly available
datasets demonstrated the effectiveness and efficiency of our
proposed DDPM-Fus. In future research, we will introduce the
pre-trained generative diffusion model to enhance the quality
of the fused image and develop faster sampling models to
reduce fusion time to further improve model efficiency.
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TABLE IV
NUMBER OF PARAMETERS, FLOPS AND TRAINING TIME OF COMPARISON

MODELS.

CAVE
Size (×106) Flops (×109) Training time (h)

PANnet 1.08 4.41 3.26
HSRnet 10.24 2.00 2.38
SSRnet 0.03 0.11 1.34
MHFnet 2.16 3.71 5.94
EDBIN 1.24 13.34 34.26

DDPM-Fus 1.69 2.66 11.44
Chikusei

Size (×106) Flops (×109) Training time (h)
PANnet 16.93 69.33 7.13
HSRnet 156.45 3.05 13.15
SSRnet 0.44 1.81 3.35
MHFnet 29.30 47.72 7.67
EDBIN 18.40 23.19 53.62

DDPM-Fus 1.93 2.72 11.91
Pavia Center

Size (×106) Flops (×109) Training time (h)
PANnet 10.79 44.18 12.01
HSRnet 100.33 2.70 19.55
SSRnet 0.28 1.15 6.88
MHFnet 19.01 31.00 8.37
EDBIN 11.76 19.88 45.45

DDPM-Fus 1.86 2.70 12.95

TABLE V
PSNR AND FUSION TIME FOR FUSING PER IMAGE WITH DIFFERENT

SAMPLING STEPS AND ABLATION STUDY ON LOSS FUNCTIONS
CONDUCTED ON THE CAVE DATASET.

Sampling steps 50 20 10 5 2 1
ℓ1 42.82 43.54 43.68 43.68 43.66 43.66
ℓ2 37.29 37.49 37.62 37.73 37.75 37.61

Test time (s) 21.25 9.33 5.42 3.75 2.5 1.92

APPENDIX

In this section, we present the derivation of the evidence
lower bound (ELBO) (6).

In the DDPM model, all corrupted images,
X1,X2, . . . ,XT , are seen as latent matrices. From the
point of variational inference, the true posterior distribution
p(X1:T |X0) is approximated by a variational distribution
q(X1:T |X0), where X1:T represents X1,X2, . . . ,XT for
short. Generally, we minimize the KL divergence between

these two distributions as

KL(q(X1:T |X0)||p(X1:T |X0))

=

∫
q(X1:T |X0) log

q(X1:T |X0)

p(X1:T |X0)
dX1:T

=

∫
q(X1:T |X0) log

q(X1:T |X0)p(X0)

p(X0:T )
dX1:T

=

∫
q(X1:T |X0) log

q(X1:T |X0)

p(X0:T )
dX1:T + log p(X0)

= log p(X0)− Eq

[
log

p(X0:T )

q(X1:T |X0)

]
(21)

Due to the nonnegativity of KL divergence, we get the ELBO
of the log-likelihood as

Eq

[
log

p(X0:T )

q(X1:T |X0)

]
≤ log p(X0). (22)

Therefore we can maximize the ELBO to achieve the maxi-
mum likelihood estimate. Note that the joint distribution of all
variables in the forward diffusion and reverse diffusion are

q(X1,X2, · · · ,XT |X0) =

T∏
t=1

q(Xt|Xt−1), (23)

p(X0,X1,X2, · · · ,XT ) = p(XT )

T∏
t=1

pθ(Xt−1|Xt). (24)

Then, the ELBO can be further simplified as

Eq

[
log

p(X0:T )

q(X1:T |X0)

]
=Eq

[
log p(XT ) + log

p(X0:T−1)

q(X1:T |X0)

]
=Eq

[
log p(XT ) +

T∑
t=1

log
pθ(Xt−1|Xt)

q(Xt|Xt−1)

]

=Eq

[
log p(XT ) +

T∑
t=1

log
pθ(Xt−1|Xt)

q(Xt−1|Xt,X0)
· q(Xt−1|X0)

q(Xt|X0)

]

=Eq

[
log

p(XT )

q(XT |X0)
+

T∑
t=1

log
pθ(Xt−1|Xt)

q(Xt−1|Xt,X0)

]
=− KL (q(XT |X0)||p(XT ))

−
T∑

t=1

KL (q(Xt−1|Xt,X0)||pθ(Xt−1|Xt)) . (25)

Note that the first term is KL divergence between the distribu-
tion of XT , the output of the forward diffusion process, and
the prior distribution p(XT ), which is very close to 0 due to
the Gaussian diffusion kernel used in the forward process. We
ignore the first term, thus, the second term is the desired result
(6).
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