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Abstract— As HPC resources continue to increase in size and 
availability, the complexity of numeric weather prediction 
models also rises.   This increases demands on HPC I/O 
subsystems, which continue to cause bottlenecks in efficient 
production weather forecasting. In this paper we review the 
available I/O methodologies in the widely used NCAR Weather 
Research and Forecasting (WRF) model.   We focus on the 
newer PNETCDF_QUILT technique that uses asynchronous 
I/O (quilt) servers alongside Parallel NetCDF.  

This paper looks at a high-resolution nested WRF case and 
compares the performance of various I/O techniques.   The 
PNETCDF_QUILT technique is then described in detail.  The 
Cray implementation of MPI-IO and useful diagnostic settings 
are discussed.   The focus is on the performance of WRF on the 
Cray XC40 platform, with both Sonexion 2000 and Cray 
DataWarp storage.  The DataWarp results are some of the first 
available and will be interesting to a wide range of Cray users. 

Keywords-component; WRF, I/O, parallel I/O, MPI-IO, Cray 
DataWarp 

I.  INTRODUCTION 
 As supercomputing resources continue to increase in size 
and availability, the resolution and complexity of numeric 
weather prediction models also rise, markedly improving 
forecast accuracy.   Unfortunately, this increases demands on 
HPC I/O subsystems, which continue to cause bottlenecks in 
efficient production weather forecasting.  It is now common 
to see numeric weather simulations at grid resolutions of less 
than 2 kilometers covering the entire globe.  Such runs can 
generate terabytes of weather information written frequently 
during a forecast cycle. 

In this paper we review the available I/O methodologies 
in the widely used Weather Research and Forecasting (WRF) 
model [1], focusing on the newer quilt server + Parallel 
NetCDF (PNETCDF_QUILT) technique that uses 
asynchronous I/O (quilt) servers alongside Parallel NetCDF.  
NetCDF, a common data format used in the environmental 
sciences, is used throughout this study [2]. 

Performance on the Cray XC40 platform with Sonexion 
2000 storage is discussed, and some early results using Cray 
DataWarp storage are also presented. Recent analysis of 
WRF benchmarks with larger domain sizes and output file 
sizes than have typically been seen prompted the discovery 

of two bugs in the WRF v3.6 and v3.7 source code, which 
suggests that the PNETCDF_QUILT technique is not very 
commonly used and deserves wider appreciation. 

A. WRF Background 
The WRF model was developed as a collaborative 

project by the National Center for Atmospheric Research 
(NCAR), the National Oceanic and Atmospheric 
Administration (NOAA), the National Centers for 
Environmental Prediction, the Air Force Weather Agency, 
the Naval Research Laboratory, the University of Oklahoma 
and the Federal Aviation Administration in the United States. 
It is a regional- to global-scale numerical weather prediction 
model intended for both research applications and 
operational weather-forecast systems.  It is suitable for a 
broad spectrum of meteorological applications across scales 
ranging from meters to thousands of kilometers. A variation 
of WRF is used as the NOAA's primary regional forecast 
model for forecasts of 5 days ahead, and is used by weather 
agencies all over the world with thousands of registered 
users. 

The WRF system incorporates two different dynamics 
solvers; the Advanced Research WRF (ARW) solver 
(developed by the Mesoscale and Microscale Meteorology 
Division of NCAR) and the Nonhydrostatic Mesoscale 
Model solver (developed by the National Centers for 
Environmental Prediction, US); in this paper, we discuss the 
former solver only. 

The ARW solves the fully compressible, non-hydrostatic 
Euler equations using a finite-difference scheme on an 
Arakawa C-grid staggering in the horizontal plane and a 
terrain following, dry hydrostatic pressure vertical 
coordinate. There are 2nd- to 6th-order advection options for 
spatial discretization in both horizontal and vertical 
directions. Integration in time is performed using a time-split 
method with a 2nd- or 3rd-order Runge-Kutta scheme with a 
smaller time step for acoustic- and gravity-wave modes. The 
model supports periodic, open, symmetric and specified 
lateral boundary conditions and is capable of whole-globe 
simulations using polar Fourier filtering and periodic east-
west boundary conditions [3]. 

The WRF model has, from the outset, been designed and 
written to perform well on massively parallel computers. It is 
written in Fortran90 and can be built in serial, parallel (MPI) 



 
Figure 1: Cray XC40 System Diagram 

and mixed-mode (OpenMP and MPI) forms, simply by 
choosing the appropriate option during the configure process. 

All results presented in this paper were obtained with 
version 3.7.1 of WRF using the ARW core compiled using 
the Cray CCE compilation suite in mixed mode (though all 
runs used MPI only). 

B. Benchmark System Configuration 
All runs mentioned in the first part of this paper were 

made on a Cray XC40 system using Intel Broadwell 
processors with 18 cores per socket (36 cores per node) and 
128GB of 2400mhz DDR4 memory per node (see Fig. 1).   

The system was configured with Sonexion 2000 storage 
hardware [4] providing a Lustre parallel file system with 16 
OSTs (stripes). Applications, like WRF, that take advantage 
of parallel I/O techniques can drastically lower the overhead 
associated with file I/O.  Files can be striped across these 
OSTs to improve I/O performance.  Cray DataWarp storage 
hardware [5] was also configured for the runs in the latter 
part of the paper.   

C. WRF Benchmark Configuraton 
The configuration for the WRF runs reported in this 

paper covers a region of Southeast Asia and is comprised of 
over 350 million grid points (see Fig. 2).  Since WRF uses 
single precision (4 byte), each weather state variable takes 
approximately 1.5 Gbytes storage for both domains, in 
memory and on disk.    Specifically: 
• Two nested domains, with 3km and 1km resolutions. 
• 5 second timestep 
• 28 vertical levels 
• Domain 1: 1770 (EW) x 1986 (NS) 
• Domain 2: 2974 (EW) x 3118 (NS)  
• 30 minute simulation 
• History files written by both domains every 15 minutes 

(timesteps 0,180,360) 
The domains are large enough to allow for scaling to 

thousands of MPI ranks.  The simulation length is kept short 
to improve test turnaround time. 

II. WRF I/O PERFORMANCE 
WRF’s well-defined I/O API provides several different 

implementations of its I/O layer: 

• Serial NetCDF [2]: Default layer.   
• Parallel NetCDF: A good alternative layer that works 

well at lower core counts built on the Parallel NetCDF 
(PNetCDF) library [6],[7], which supports parallel I/O.   

• Quilt Servers: A third technique for writes that uses I/O 
(or quilt) servers that deal exclusively with I/O, enabling 
the compute PEs to continue with their work without 
waiting for data to be written to disk before proceeding. 

• Quilt Servers with PNetCDF:  An additional technique 
that combines the I/O server concept with PNetCDF to 
enable parallel asynchronous writes of WRF history and 
restart files. This technique proves to be highly 
advantageous on the Cray XC40 under certain 
circumstances. 

On the Cray XC40, the NetCDF and PNetCDF libraries 
are available as standard modules and are supported with the 
standard programming environment releases. While the 
serial NetCDF and PNetCDF techniques can be used for both 
input files and history/restart output files, the I/O server 
techniques are only applicable when writing files and so only 
output I/O is considered in most of what follows. 

A. WRF Output Files 
During a typical WRF simulation, both forecast history 

files and restart files are written periodically.  While history 
files tend to be retained, typically all but the most recent 
restart file will be discarded. 

In the configuration considered here, a separate NetCDF 
output history file is created by WRF for each of the two 
domains at specified output intervals (frames_per_outfile=1 
in the input namelist).  The larger Domain 2 creates the 
largest history file (19.8G per frame or output step); Domain 
1 creates 7.5G per frame or output step.   All output files are 
uncompressed to enable comparison of the I/O techniques, 
and all reported times are in seconds. 

B. Serial NetCDF 
To output a distributed array in WRF, the default I/O 

layer mentioned above (compile option –DNETCDF) gathers 
all of the data onto the master MPI rank 0 using a call to MPI 

 
 

Figure 2: Benchmark Forecast Domain Configuration 
 

 
 



 
Figure 3: Serial NetCDF: Mean time per output step and % time spent 

in output (MPI only) 
 

Gatherv, reconstructs the array and then writes it to disk 
using the standard, serial NetCDF library.  All other MPI 
ranks block until the master has completed the write. The 
time taken to do all of this for each domain is written by 
WRF to standard output rsl.out.0000: 

Timing for Writing wrfout_d01_2015-03-10_00_00_00 
for domain 1:    5.53356 elapsed seconds 

This metric is referred to as “effective” I/O time in what 
follows.  Clearly, since it includes the time taken by the call 
to MPI Gatherv plus NetCDF formatting, it is not strictly the 
time taken to write the data to disk but it does represent the 
amount of wall-clock time attributable to producing the 
output. 

For small WRF domain sizes and low rank counts, the 
serial NetCDF approach can be a reasonable option.  
However, given the dependence of this method on 
MPI_Gatherv and its serial nature, as MPI rank counts 
increase and domain sizes get larger, it becomes a huge 
bottleneck to performance.  It is also the case that rank 0 can 
quickly run out of memory as global arrays are collected 
though using the Cray ALPS MPMD multiple-binary launch 
capability to place rank 0 on its own node can mitigate this 
issue.  Fig. 3 is an extreme illustration of how much time 
writing output files can take, showing both mean time per 
output step and percentage of time spent in write.  Note that 
although the effective output time is significant, largely due 
to the MPI_Gatherv overhead, the time taken to actually 
write the output files in all cases is constant and much 
smaller (at a rate of about 0.9GB/s). 

One way to reduce the MPI_Gatherv bottleneck is to use 
MPI/OpenMP hybrid mode to reduce the number of MPI 
ranks per node, which pushes the bottleneck out to higher 
node counts.  However, adding OpenMP threads only delays 
rather than removes the point at which serial NetCDF 
becomes unworkable, and we now consider the alternative 
I/O strategies available in the WRF software.  The most 
straightforward alternative is parallel NetCDF. 

C. Parallel NetCDF 
As mentioned above, WRF contains an I/O layer 

(compile option –DNETCDF –DPNETCDF) implemented 
with PNetCDF, which is an extension of the NetCDF library 

that supports parallel I/O.  PNetCDF is a collaborative effort 
between Argonne Labs and Northwestern University [6],[7].  
On the Cray XC40, PNetCDF is implemented using Cray 
MPI-IO, which works closely with the Lustre parallel file 
system to align read and write operations to Lustre stripes.  
The Cray MPI-IO layer uses aggregators to write data in 
groups of PEs [8]. 

To use PNetCDF, the user must set 
io_form_{history/restart/input}=11 in the input namelist file.  
It is also often necessary to set nocolons=.true.. 

The combination of PNetCDF with the Cray MPI-IO 
layer means that the MPI ranks are aggregated into groups 
(the number of groups can be based on MPI-IO hints if 
provided by the user, but defaults to the Lustre stripe count 
of the output file) and then one aggregator from each group 
performs the write to file.  This reduces both gather times 
and contention considerably, particularly since MPI-IO 
collective buffering attempts to assign one aggregator per 
OST and to make sure that each one is on a different node. 

The Cray MPI-IO library has benefitted from extensive 
work over the past few years and is fully integrated with the 
Cray MPICH library and the Lustre file system structure 
(OST striping).  It also provides some useful diagnostic tools 
to quickly get a handle on what the MPI-IO layer is doing on 
a per-file basis. 

To use PNetCDF on the Cray XC40, the input and 
history (and/or restart) files are striped over as many OSTs as 
desired, up to the maximum on the filesystem.  For smaller 
problem sizes, 4 to 8 stripes can be sufficient, though this 
increases for larger-sized problems.   A rule of thumb is to 
use somewhere between sqrt(nprocs) and 0.5*sqrt(nprocs) 
OSTs up to the max configured, where nprocs is the number 
of MPI ranks being used; a number of OSTTs evenly 
divisible into nprocs is ideal.  For the runs in this paper, 16 
OSTs were available and 16 stripes were used. Various Cray 
MPI-IO environment variables can then be set to check 
whether and how the striping has worked.  

At runtime, the MPI-IO library checks the Lustre striping 
of the output file (inherited from the run directory or 
individually specified as shown below) and assigns the same 
number of MPI-IO aggregators to that file.  It automatically 
spreads the aggregators out across the nodes containing 
compute ranks as evenly as it can.  The compute ranks are 
then shared among the aggregators so the I/O is performed 
collectively (i.e., in parallel).   

The Cray MPIIO layer provides the environment variable 
MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLA
Y, which when set writes to stdout the detail of how the 
aggregators have been placed among the compute nodes 
(NIDS): 

 
 
Aggregator Placement for wrfinput_d01 
RankReorderMethod=3  
AggPlacementStride=-1 
  AGG    Rank       nid 
  ----  ------  -------- 
     0       0  nid00016 



     1     434  nid00041 
     2     868  nid00125 
     3    1302  nid00221 
     4    1736  nid00245 
     5    2170  nid00269 
     6    2604  nid00293 
     7    3038  nid00317 
     8      18  nid00349 
     9     452  nid00373 
    10     886  nid00773 
    11    1320  nid00797 
    12    1754  nid00821 
    13    2188  nid00845 
    14    2622  nid00869 
    15    3056  nid00893 
 
Instead of striping the output file before the run (via the 

lfs setstripe command), MPI-IO hints can alternatively be 
used to set the number of aggregators (or cb_nodes) used for 
each file.  For example, the following setting ensures that 
any file starting with the string “wrfout” will be created and 
striped over 16 OSTs and thus that 16 aggregators will be 
used for writing it: 

MPICH_MPIIO_HINTS= “wrfout*:striping_factor=16” 
Subsequently, the runtime environment variable 

MPICH_MPIIO_HINTS_DISPLAY can be set to display 
whether or not a file has been opened via the MPI-IO layer 
and how it was striped (look for cb_nodes=16 to see that we 
are indeed using all the OSTs we requested): 

 
PE 0: MPIIO hints for wrfoutput_d01: 
cb_buffer_size   = 16777216 
romio_cb_read    = automatic 
romio_cb_write   = automatic 
cb_nodes         = 16 
cb_align         = 2 
romio_no_indep_rw   = false 
romio_cb_pfr     = disable 
romio_cb_fr_types   = aa 
romio_cb_fr_alignment = 1 
romio_cb_ds_threshold = 0 
romio_cb_alltoall  = automatic 
ind_rd_buffer_size    = 4194304 
ind_wr_buffer_size  = 524288 
romio_ds_read       = disable 
romio_ds_write      = disable 
striping_factor   = 16 
striping_unit       = 1048576 
romio_lustre_start_iodevice = 0 
direct_io         = false 
aggregator_placement_stride = -1 
abort_on_rw_error    = disable 
cb_config_list       = *:* 
romio_filesystem_type = CRAY ADIO: 
 
Another very useful setting to use at runtime is 

MPICH_MPIIO_STATS=1: 

 
+------------------------------------+ 
| MPIIO read access patterns for 
| wrfoutput_d01 
|   independent reads       = 1 
|   collective reads        = 457452 
|   independent readers     = 1 
|   aggregators             = 16 
|   stripe count            = 16 
|   stripe size             = 1048576 
|   system reads            = 7727 
|   stripe sized reads      = 7512 
|  total bytes for reads = 7964753971 
|    = 7595 MiB = 7 GiB 
|   ave system read size    = 1030769 
|   number of read gaps     = 1 
|   ave read gap size       = 1 
| See "Optimizing MPI I/O on Cray XE 
| Systems" S-0013-20 for explanations. 
+------------------------------------+ 
 
To see even more performance information, try the 

setting MPICH_MPIIO_STATS=2, which provides a 
timeline viewable in the Cray Apprentice2 tool and data 
from which bandwidth charts can be generated, among other 
features. 

Fig. 4 illustrates the effect on write times and percentage 
when the serial NetCDF in Fig. 3 is replaced by pNetCDF.  
Again, no OpenMP threads were used.   Each aggregator 
writes its data to file at close to 0.9GB/s. 

PNetCDF is a great technique to use as an alternative to 
serial NetCDF and can give good performance.  However, as 
the number of MPI ranks continues to increase, it too starts 
to take an unacceptable percentage of total run time and we 
again look for a better alternative.    As a rule of thumb, once 
the time taken to write a single output frame increases 
beyond two or three seconds, it becomes advantageous to 
investigate the use of quilt servers. 

D. Asynchronous I/O (Quilt Servers) 

 
Figure 4:  Parallel NetCDF: Mean time per output step and % time spent 

in output (MPI only) 
 



 
Figure 5: Quilt Servers: Mean time per output step and % time spent in 

output (MPI only, 4 extra nodes assigned to quilt servers) 
 

As described above, whether using serial NetCDF or 
PNetCDF, all MPI ranks have to wait for the master rank to 
finish writing history data to disk before proceeding with 
their computation.   When this wait time starts to place a 
heavier overhead on the total runtime than is acceptable, it 
makes sense to set aside one or more ranks (known as quilt 
or I/O servers) to deal exclusively with the I/O, so that once 
the compute (client) ranks have sent their data to these I/O 
servers, they can continue with their work while the data is 
formatted and written to disk in the background 
(asynchronously).   Whether or not this technique is 
appropriate depends on the amount of output time taken by 
PNetCDF and the number of compute ranks being used, 
since it can be inefficient to dedicate too high a proportion of 
ranks to I/O only. 

WRF provides such I/O server functionality (compile 
with –DNETCDF only), enabling the user to select at 
runtime via the input namelist_quilt the number of groups of 
I/O servers to allocate (nio_groups) and the number of I/O 
ranks per group (nio_tasks_per_group).    More than one 
group of I/O servers is necessary if there is more than one 
domain, or if the time between subsequent output steps is 
short, since each group can work on only one output frame at 
any one time, and if too few groups are available the WRF 
simulation will stall waiting for the next group to become 
free. 

The compute tasks are numbered from 0 upwards in 
MPI_COMM_WORLD and their total number nprocs = 
nproc_x * nproc_y, where the processor decomposition 
(nproc_x, nproc_y) gives the number of compute processors 
along the x and y axes, respectively. 

The total number of I/O servers (whose first rank number 
immediately follows the final compute rank number in 
MPI_COMM_WORLD) is given by nio_groups * 
nio_tasks_per_group, where nio_tasks_per_group cannot 
exceed nproc_y.   WRF attempts to match each I/O server 
with compute tasks in the east-west rows, and ideally 
(though this is not mandatory) nproc_y should be an exact 
multiple of nio_tasks_per_groups.   This ensures that each 
I/O server rank handles the same number of compute ranks, 
which should lead to the best balance, but it also has 
important implications for the parallel quilt method in the 
following section.   Together these groups of compute ranks 

and I/O server are mapped onto an MPI communicator; the 
gather of data from compute ranks onto the I/O server is 
implemented using an MPI_Gatherv across that 
communicator. See [9] for a nice illustration of how ranks 
are assigned to I/O servers. 

One I/O group is selected at runtime to handle the output 
to a particular file, and within that I/O group the servers 
forward their data to a designated root server, which 
performs the actual write. 

The quilt server technique essentially reduces 
significantly the output overhead seen by the compute ranks 
in waiting for a write to complete (for all output steps aside 
from the final frame). The standard rsl.out.0000 output 
mentioned above now should show an effective output time 
of well under a second, since that is what a typical compute 
rank now sees:   

Timing for Writing wrfout_d01_2015-03-10_00_00_00 
for domain        1:    0.53356 elapsed seconds 

The actual time taken for the gather and write is of course 
well above this effective metric.  See Appendix A for some 
practical hints on using quilt servers on the Cray XC system. 

Once I/O servers have been introduced, the performance 
bottleneck associated with I/O is no longer the sending of 
data to disk (the time to do this remains unchanged, but is 
asynchronous), but the gather of data from compute PEs onto 
the I/O servers. 

The disadvantage of this technique can be that the quilt 
server writes are still slow (somewhat equivalent to the 
speeds seen in serial NetCDF though with less time spent in 
gather due to fewer ranks participating), though overlapped, 
and the write of the output at the final step can overwhelm a 
short simulation. Fig. 5 shows the case in the previous two 
figures where now four nodes of I/O servers (two groups of 
16 servers, 8 allocated per node) have been added in each 
instance.  Also illustrated here is the time to write the final 
output. The percentage of time spent in I/O is now well 
below 10%, ignoring the final output step.  Each root I/O 
server writes to disk at a rate of around 0.9GB/s. 

As mentioned above, the write time is now overlapped 
with the computation meaning that (as is the case here) if the 
integration time between output steps is longer than the time 
taken to write a file, only one group of I/O servers per 
domain will be required and the only apparent overhead will 
be in the time to write out the files at the final step.    
However, if the simulation is short this final output time 
could well overwhelm the total runtime and perform less 
well than PNetCDF.   If the integration time between output 
steps is much shorter than the time to write a file (which can 
happen as more and more MPI ranks are assigned to a 
computation, or if MPI/OpenMP hybrid mode is used, or if 
the output files themselves are much larger than in this 
particular case), more and more groups of I/O servers can be 
required, meaning increasing numbers of I/O nodes need to 
be assigned to the simulation.   One scenario where this 
might be a problem is in severe thunderstorm forecasting, 
where output might be required every simulation minute and 
multiple ensembles are needed. 

 However, what if we could reduce the amount of time 
taken to write an output file as well as overlapping that write 



 
Figure 7: Serial NetCDF: Proportion of time spent in compute and I/O 

 

 
Figure 9: Quilt Servers: Proportion of time spent in compute and I/O 

 

 
Figure 10: Parallel NetCDF + Quilt Servers: Proportion of time spent in 

compute and I/O 
 

with the computation?   That would then minimize the 
number of groups of I/O servers necessary to perform the 
output, and also reduce the final output step time.   
Fortunately, Andrew Porter from the STFC Daresbury 
Laboratory has implemented in WRF just such a technique, 
which we describe in the following section. 

E. Asynchronous I/O with PNetCDF 
If the WRF code is compiled using the predefines –

DNETCDF –DPNETCDF –DPNETCDF_QUILT and the 
asynchronous I/O servers are requested in the namelist input 
file with io_form_history=11, instead of serial I/O, the writes 
to disk are performed in parallel using MPI-IO so we gain 
the combined benefits of both techniques. 

As mentioned in the previous section, it is ideal if the 
number of I/O servers per group is evenly divisible into 
nproc_y.  This clearly leads to the most balanced scenario, 
but it turns out it is not functionally necessary in all cases, 
particularly when the domain sizes are small and the number 
of I/O servers is also small (say, 8 or below).  However, this 
becomes much more important when the number of servers 
is 16.   See Appendix B for further discussion. 

Fig. 6 shows the improvement seen when combining 
PNetCDF with the asynchronous quilt servers.  As in the 
previous section, four extra nodes are assigned for two 
groups of 16 I/O servers.  The percentage of time spent in 
I/O is now well below 3% and the final step overhead has 
dropped significantly.  This means that we could write 
output much more frequently or scale up the MPI rank 
counts much higher while still only requiring two groups of 
I/O servers.  We can also better handle short runs that might 
otherwise be overwhelmed by the final output writes. 

The actual write rate of each I/O server group, though 
performed in parallel via a collective MPI-IO call, is 
somewhat slower than in the PNetCDF-only case, since the 
aggregator ranks are now packed onto very few I/O-only 
nodes rather than spread out among the compute nodes,  so 
their I/O is then also concentrated through very few OSTs.  

F. Summary Comparison of all Four Methods 
 Figs. 7--10 summarize the detail of the previous four 

sections, showing how the proportion of time spent in I/O is 

 
Figure 8: Parallel NetCDF: Proportion of time spent in compute and I/O. 

 
 

 
Figure 6: Mean time per output step and % time spent in output (MPI 

only, 4 extra nodes assigned for quilt servers) 
 



 
 

Figure 11: Effective input I/O rates, in GBytes/sec, using 3 DataWarp 
SSDs and Lustre (3 and 16 OSTs).  Includes data collection and 

formatting times for serial and parallel NetCDF 
 

 
 reduced as the four I/O methods are implemented in turn.  

The read and write times shown are effective times as seen 
by compute rank 0, and the actual time for the final step 
write is included in the “overhead.” 

 

III. CRAY DATAWARP 
A recently introduced data storage offering, Cray 

DataWarp [5], provides a new, cost effective file-based 
storage option.  It is comprised of commercial SSD hardware 
and Cray-developed software and is installed on Cray XC 
service nodes connected directly to the Cray XC system’s 
Aries high-speed network (see Fig. 1).  This section 
discusses the use and performance of DataWarp using the 
same WRF benchmark case as in previous sections. 

There are several ways to use DataWarp storage, 
currently controlled per job, through a supported workload 
manager (WLM) such as SLURM or Moab/Torque.  A 
typical use is as a scratch file space where any data located 
on DataWarp exists only for the length of the job that 
allocated the space.  Any files needed as input to the job or 
which are written by the job and need to be permanently 
saved are staged by the WLM via user script directives.  This 
is the method used for this WRF benchmark.  WRF initial 
conditions, wrfinput*, are prestaged to DataWarp and 
forecast history files, wrfout*, written to DataWarp during 
the forecast run are staged to permanent Lustre storage at the 
end of the job.  Note that there are cases in many weather 
forecast applications, including WRF, where many 
temporary files, such as preprocessing output or periodic 
restart files, will not need staging to other storage.  The 
following directives to control DataWarp allocation and 
staging were added to WRF run script.  These directives are 
parsed by the WLM when the batch job is submitted and take 
care of allocation of the proper amount and type of storage 
requested as well as staging of any requested files: 

 
 

#DW jobdw type=scratch access_mode=striped 
capacity=1150GiB 

#DW stage_in type=file source=INPUT/wrfinput_d01 
destination=$DW_JOB_STRIPED/wrfinput_d01 

#DW stage_out type=file 
destination=OUTPUT/wrfout_d01_2015-03-10_00_00_00 
source=$DW_JOB_STRIPED/wrfout_d01_2015-03-
10_00_00_00 

 
In the first directive above we allocate 1.15 TB of scratch 

disk storage striped over three DataWarp nodes, 383 GB per 
node (the allocation chunk size is defined at installation 
time).  The next two directives specify files to be staged in 
before the job runs and staged out when it completes. 

For this study, three DataWarp nodes, each comprised of 
two Intel P3608 SSDs, were used for reading WRF initial 
conditions and writing forecast history. Each Intel P3608 is 
capable of over 5 GB/s when reading and over 3 GB/s 
writing, giving each DataWarp node a peak I/O bandwidth of 
approximately 8 GB/s read and 6 GB/s write.  With multiple 
DataWarp nodes, the parallel I/O techniques and WRF 
features described in earlier sections also apply. 

Figs. 11 and 12 show effective input and output I/O rates 
as seen from the WRF computation processes.  As 
mentioned earlier, effective rates are lower than actual rates 
as they include time needed for data collection and 
formatting. The serial NetCDF and PNetCDF methods (see 
sections B and C above) were evaluated using the three 
available DataWarp nodes and then compared to using 
Lustre with a striping factor of three to ensure a consistent 
number of parallel writers/readers.  A comparison with 16 
Lustre stripes is also given. 

For serial NetCDF, the actual Posix read and write rates 
for the DataWarp SSDs were in the range 1.25 to 1.75 GB/s, 
compared to just under 1GB/s for the Lustre hardware.   
Note that under ideal conditions, maximum write rates are 
6GB/s and 4GB/s for one DataWarp node and one Sonexion 
2000 OST, respectively. 

 
 

Figure 12: Effective output I/O rates in GBytes/sec, using 3 DataWarp 
SSDs and Lustre (3 and 16 OSTs).  Includes data collection and 

formatting times for serial and parallel NetCDF 
 



As can be seen in the figures, using the parallel I/O 
features of WRF with Cray DataWarp gives better 
performance than Lustre for the same number of aggregators. 
Using more DataWarp nodes (similar to adding more Lustre 
stripes) will decrease the I/O overhead, as seen by the 
application, even further. 

IV. CONCLUSION 
In this paper we have addressed the fact that, for many 

applications, I/O overhead can limit scaling to higher 
numbers of cores and place an unnecessary cap on potential 
throughput.  Cray XC systems have the capability to nearly 
eliminate these restrictions when used in conjunction with 
parallel I/O features implemented within an application. 

We have considered the various I/O methods available in 
the widely-used WRF software applied to a realistic forecast 
case and have demonstrated how to use the parallel I/O 
features of the Cray XC40 system to optimize I/O 
performance; these features become ever more critical as 
forecast domain sizes continue to increase, leading to the 
need for higher numbers of MPI ranks for faster computation 
and to larger input and output files.  While the more familiar 
PNetCDF and quilt server techniques are good options in a 
range of WRF scenarios, the advantages of combining the 
two methods along with the efficient implementation of Cray 
MPI-IO enable WRF users to scale their forecast simulations 
to higher node counts and larger problem sizes than ever 
before.   While the default single-writer NetCDF method 
limits the MPI-only scaling of this particular forecast case to 
approximately 128 nodes, by switching to the superior 
parallel I/O options the forecast case scales to at least 512 
nodes, cutting the time-to-forecast by over 75%. 

While the scaling of the Lustre filesystem is clearly 
demonstrated, it can be seen from these initial results that 
even very few Cray DataWarp SSDs can provide equivalent 
or superior effective I/O performance compared to the same 
number of Lustre OSTs, at a much reduced cost and with 
higher reliability.  Early results from WRF experiments 
made at the King Abdullah University of Science and 
Technology (KAUST) in Saudi Arabia, where the new Cray 
XC40 system Shaheen II has both a Sonexion 2000 Lustre 
filesystem with 144 OSTs and also 268 DataWarp nodes, 
agree with the initial impression that the comparison between 
equal numbers of OSTs and DataWarp nodes shows roughly 
equivalent performance, with DataWarp in general 
performing better [10].  The KAUST analysis has shown 
good WRF I/O scaling so far on up to 100 DataWarp nodes, 
with investigations still ongoing. 

V. APPENDICES 

A. Quilt Servers on the Cray XC40 
In this section we give a few tips on using quilt servers 

on the Cray XC system. Initially, try setting the number of 
I/O server groups to the number of output files per output 
step (so if there are four nested domains and one history file 
each per step, use four groups).  If the “Timing for Writing” 
metric in the standard rank 0 output file is still well over a 
second, this indicates that a file had to wait for an I/O group 

to become available before proceeding, in which case try 
more groups until all the writes are overlapped according to 
the rank 0 output. 

The number of I/O servers required per I/O server group 
depends on the domain sizes of the problem under 
consideration.  Eight I/O servers per group is a good starting 
point, but for the problem under consideration, eight was not 
enough and so 16 were used.    For reference, the error 
message observed when eight servers were tried was 

 
---------- FATAL CALLED ----------- 
FATAL CALLED FROM FILE:<stdin> LINE: 685   
Possible 32-bit overflow on output 
server. Try larger nio_tasks_per_group 
in namelist. 

 
If a WRF run using quilt servers does fail, be sure to look 

at the specific rsl.error files for the I/O server ranks, as their 
error messages will not show up in rsl.error.0000. 

Since the I/O servers gather data from many compute 
ranks, they require more memory than the compute ranks 
(generally a similar requirement to the serial rank 0 
collector) and so cannot be fully packed onto nodes with 
large numbers of cores.   For the runs in this paper we used 8 
ranks per node, spread out evenly across both numa nodes 
(sockets).  In order to ensure that the compute ranks could be 
differently packed on the nodes than the I/O server ranks, the 
MPMD (multiple program multiple data) facility of the Cray 
ALPS application launcher was used; for example, 

aprun -j1 -ss -n 9216 –N36 -d 1 ./wrf.exe : 
 -j1 -n128 -N8 -d 4 ./wrf.exe 

Previous investigations [3] into spreading the I/O ranks 
among the compute ranks have shown no real advantage to 
the write performance and this also messes up the careful 
compute rank ordering that can be done to minimize the halo 
communication times.   However, it is advantageous to 
spread each I/O group out across the nodes used for the I/O 
servers rather than concentrating each group on its own 
node/s.     This can be achieved via rank reordering within 
the I/O servers themselves. 

To achieve good quilt server performance on the Cray 
XC40, set the environment variable MPICH_COLL_SYNC 
= MPI_Gather. 

Note that if the WRF code has been compiled with 
NETCDF4 options, the quilt server method (and, in fact, the 
serial NetCDF method) will write a compressed output file, 
which can take a very long time.  The namelist setting 
use_netcdf_classic=.true. avoids the use of the NETCDF4 
compression. 

Other useful hints on running WRF can be found in [11] 
and [12]. 

 

B. Quilt Servers with PNetCDF on the Cray XC40 
This section describes some observations made when 

experimenting with PNetCDF and I/O servers.  When 
PNetCDF quilting is enabled, each of the compute ranks 
assigned to an I/O group holds one “patch,” and an attempt is 
made to stitch those patches together before the data is 



finally written to disk.   If each I/O server in the group 
contains the same number of stitched patches, then all 
servers do the same number of writes and collective MPI-IO 
is used to write the data.  However, if the I/O servers contain 
a different number of stitched patches to one another, any 
leftover patches will have to be written in independent mode 
(i.e., serially).   This is immediately detectable during a WRF 
simulation from the rank 0 standard output. 

If nproc_y exactly divides the nio_tasks_per_group 
number, then each server will have an identical number of 
compute PEs and we are guaranteed that when their patches 
are stitched together, we end up with the same number of 
stitched patches on each I/O server and the writes are 
performed collectively.   However, if this is not the case, 
there is a chance that different servers will end up with a 
different number of stitched patches.  When there are fewer 
(8 or less) I/O servers per group, it appears that even with 
nproc_y not evenly divisible into nio_tasks_per_group, we 
are still very likely to end up with only one patch on each 
server and thus the write will still be performed collectively.   
However, with 16 I/O servers per group, we very often end 
up with two or three patches on some servers, and one on the 
rest, and the write speeds drop down to serial. This was very 
easily diagnosed on the Cray XC40 by setting the 
environment variable MPICH_MPIIO_HINTS_DISPLAY, 
which showed the output file being first opened in collective 
mode (cb_nodes=16) but then subsequently opened again in 
independent mode (cb_nodes=1). 

This information enabled us to find a bug in the parallel 
NetCDF quilt code that used the default domain 
decomposition rather than the user-specified domain 
decomposition when assessing whether or not to use 
collective I/O.  The fact that this had not been detected 
before in versions 3.6.1 or 3.7.1 of WRF indicates that 
perhaps this technique is not very widely used in the 
community; we believe that it deserves much more attention.  
The source code has been fixed in the recent WRF v3.8 
release. 
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