
Improving I/O Performance of the Weather Research and Forecast (WRF) Model

Tricia Balle
Cray Inc.

Benchmarking and Presales
Pukekawa, New Zealand

pburgess@cray.com

Pete Johnsen
Cray Inc.

Performance Engineering
St Paul, MN, USA

pjj@cray.com

Abstract— As HPC resources continue to increase in size and
availability, the complexity of numeric weather prediction
models also rises. This increases demands on HPC I/O
subsystems, which continue to cause bottlenecks in efficient
production weather forecasting. In this paper we review the
available I/O methodologies in the widely used NCAR Weather
Research and Forecasting (WRF) model. We focus on the
newer PNETCDF_QUILT technique that uses asynchronous
I/O (quilt) servers alongside Parallel NetCDF.

This paper looks at a high-resolution nested WRF case and
compares the performance of various I/O techniques. The
PNETCDF_QUILT technique is then described in detail. The
Cray implementation of MPI-IO and useful diagnostic settings
are discussed. The focus is on the performance of WRF on the
Cray XC40 platform, with both Sonexion 2000 and Cray
DataWarp storage. The DataWarp results are some of the first
available and will be interesting to a wide range of Cray users.

Keywords-component; WRF, I/O, parallel I/O, MPI-IO, Cray
DataWarp

I. INTRODUCTION
 As supercomputing resources continue to increase in size
and availability, the resolution and complexity of numeric
weather prediction models also rise, markedly improving
forecast accuracy. Unfortunately, this increases demands on
HPC I/O subsystems, which continue to cause bottlenecks in
efficient production weather forecasting. It is now common
to see numeric weather simulations at grid resolutions of less
than 2 kilometers covering the entire globe. Such runs can
generate terabytes of weather information written frequently
during a forecast cycle.

In this paper we review the available I/O methodologies
in the widely used Weather Research and Forecasting (WRF)
model [1], focusing on the newer quilt server + Parallel
NetCDF (PNETCDF_QUILT) technique that uses
asynchronous I/O (quilt) servers alongside Parallel NetCDF.
NetCDF, a common data format used in the environmental
sciences, is used throughout this study [2].

Performance on the Cray XC40 platform with Sonexion
2000 storage is discussed, and some early results using Cray
DataWarp storage are also presented. Recent analysis of
WRF benchmarks with larger domain sizes and output file
sizes than have typically been seen prompted the discovery

of two bugs in the WRF v3.6 and v3.7 source code, which
suggests that the PNETCDF_QUILT technique is not very
commonly used and deserves wider appreciation.

A. WRF Background
The WRF model was developed as a collaborative

project by the National Center for Atmospheric Research
(NCAR), the National Oceanic and Atmospheric
Administration (NOAA), the National Centers for
Environmental Prediction, the Air Force Weather Agency,
the Naval Research Laboratory, the University of Oklahoma
and the Federal Aviation Administration in the United States.
It is a regional- to global-scale numerical weather prediction
model intended for both research applications and
operational weather-forecast systems. It is suitable for a
broad spectrum of meteorological applications across scales
ranging from meters to thousands of kilometers. A variation
of WRF is used as the NOAA's primary regional forecast
model for forecasts of 5 days ahead, and is used by weather
agencies all over the world with thousands of registered
users.

The WRF system incorporates two different dynamics
solvers; the Advanced Research WRF (ARW) solver
(developed by the Mesoscale and Microscale Meteorology
Division of NCAR) and the Nonhydrostatic Mesoscale
Model solver (developed by the National Centers for
Environmental Prediction, US); in this paper, we discuss the
former solver only.

The ARW solves the fully compressible, non-hydrostatic
Euler equations using a finite-difference scheme on an
Arakawa C-grid staggering in the horizontal plane and a
terrain following, dry hydrostatic pressure vertical
coordinate. There are 2nd- to 6th-order advection options for
spatial discretization in both horizontal and vertical
directions. Integration in time is performed using a time-split
method with a 2nd- or 3rd-order Runge-Kutta scheme with a
smaller time step for acoustic- and gravity-wave modes. The
model supports periodic, open, symmetric and specified
lateral boundary conditions and is capable of whole-globe
simulations using polar Fourier filtering and periodic east-
west boundary conditions [3].

The WRF model has, from the outset, been designed and
written to perform well on massively parallel computers. It is
written in Fortran90 and can be built in serial, parallel (MPI)

Figure 1: Cray XC40 System Diagram

and mixed-mode (OpenMP and MPI) forms, simply by
choosing the appropriate option during the configure process.

All results presented in this paper were obtained with
version 3.7.1 of WRF using the ARW core compiled using
the Cray CCE compilation suite in mixed mode (though all
runs used MPI only).

B. Benchmark System Configuration
All runs mentioned in the first part of this paper were

made on a Cray XC40 system using Intel Broadwell
processors with 18 cores per socket (36 cores per node) and
128GB of 2400mhz DDR4 memory per node (see Fig. 1).

The system was configured with Sonexion 2000 storage
hardware [4] providing a Lustre parallel file system with 16
OSTs (stripes). Applications, like WRF, that take advantage
of parallel I/O techniques can drastically lower the overhead
associated with file I/O. Files can be striped across these
OSTs to improve I/O performance. Cray DataWarp storage
hardware [5] was also configured for the runs in the latter
part of the paper.

C. WRF Benchmark Configuraton
The configuration for the WRF runs reported in this

paper covers a region of Southeast Asia and is comprised of
over 350 million grid points (see Fig. 2). Since WRF uses
single precision (4 byte), each weather state variable takes
approximately 1.5 Gbytes storage for both domains, in
memory and on disk. Specifically:
• Two nested domains, with 3km and 1km resolutions.
• 5 second timestep
• 28 vertical levels
• Domain 1: 1770 (EW) x 1986 (NS)
• Domain 2: 2974 (EW) x 3118 (NS)
• 30 minute simulation
• History files written by both domains every 15 minutes

(timesteps 0,180,360)
The domains are large enough to allow for scaling to

thousands of MPI ranks. The simulation length is kept short
to improve test turnaround time.

II. WRF I/O PERFORMANCE
WRF’s well-defined I/O API provides several different

implementations of its I/O layer:

• Serial NetCDF [2]: Default layer.
• Parallel NetCDF: A good alternative layer that works

well at lower core counts built on the Parallel NetCDF
(PNetCDF) library [6],[7], which supports parallel I/O.

• Quilt Servers: A third technique for writes that uses I/O
(or quilt) servers that deal exclusively with I/O, enabling
the compute PEs to continue with their work without
waiting for data to be written to disk before proceeding.

• Quilt Servers with PNetCDF: An additional technique
that combines the I/O server concept with PNetCDF to
enable parallel asynchronous writes of WRF history and
restart files. This technique proves to be highly
advantageous on the Cray XC40 under certain
circumstances.

On the Cray XC40, the NetCDF and PNetCDF libraries
are available as standard modules and are supported with the
standard programming environment releases. While the
serial NetCDF and PNetCDF techniques can be used for both
input files and history/restart output files, the I/O server
techniques are only applicable when writing files and so only
output I/O is considered in most of what follows.

A. WRF Output Files
During a typical WRF simulation, both forecast history

files and restart files are written periodically. While history
files tend to be retained, typically all but the most recent
restart file will be discarded.

In the configuration considered here, a separate NetCDF
output history file is created by WRF for each of the two
domains at specified output intervals (frames_per_outfile=1
in the input namelist). The larger Domain 2 creates the
largest history file (19.8G per frame or output step); Domain
1 creates 7.5G per frame or output step. All output files are
uncompressed to enable comparison of the I/O techniques,
and all reported times are in seconds.

B. Serial NetCDF
To output a distributed array in WRF, the default I/O

layer mentioned above (compile option –DNETCDF) gathers
all of the data onto the master MPI rank 0 using a call to MPI

Figure 2: Benchmark Forecast Domain Configuration

Figure 3: Serial NetCDF: Mean time per output step and % time spent

in output (MPI only)

Gatherv, reconstructs the array and then writes it to disk
using the standard, serial NetCDF library. All other MPI
ranks block until the master has completed the write. The
time taken to do all of this for each domain is written by
WRF to standard output rsl.out.0000:

Timing for Writing wrfout_d01_2015-03-10_00_00_00
for domain 1: 5.53356 elapsed seconds

This metric is referred to as “effective” I/O time in what
follows. Clearly, since it includes the time taken by the call
to MPI Gatherv plus NetCDF formatting, it is not strictly the
time taken to write the data to disk but it does represent the
amount of wall-clock time attributable to producing the
output.

For small WRF domain sizes and low rank counts, the
serial NetCDF approach can be a reasonable option.
However, given the dependence of this method on
MPI_Gatherv and its serial nature, as MPI rank counts
increase and domain sizes get larger, it becomes a huge
bottleneck to performance. It is also the case that rank 0 can
quickly run out of memory as global arrays are collected
though using the Cray ALPS MPMD multiple-binary launch
capability to place rank 0 on its own node can mitigate this
issue. Fig. 3 is an extreme illustration of how much time
writing output files can take, showing both mean time per
output step and percentage of time spent in write. Note that
although the effective output time is significant, largely due
to the MPI_Gatherv overhead, the time taken to actually
write the output files in all cases is constant and much
smaller (at a rate of about 0.9GB/s).

One way to reduce the MPI_Gatherv bottleneck is to use
MPI/OpenMP hybrid mode to reduce the number of MPI
ranks per node, which pushes the bottleneck out to higher
node counts. However, adding OpenMP threads only delays
rather than removes the point at which serial NetCDF
becomes unworkable, and we now consider the alternative
I/O strategies available in the WRF software. The most
straightforward alternative is parallel NetCDF.

C. Parallel NetCDF
As mentioned above, WRF contains an I/O layer

(compile option –DNETCDF –DPNETCDF) implemented
with PNetCDF, which is an extension of the NetCDF library

that supports parallel I/O. PNetCDF is a collaborative effort
between Argonne Labs and Northwestern University [6],[7].
On the Cray XC40, PNetCDF is implemented using Cray
MPI-IO, which works closely with the Lustre parallel file
system to align read and write operations to Lustre stripes.
The Cray MPI-IO layer uses aggregators to write data in
groups of PEs [8].

To use PNetCDF, the user must set
io_form_{history/restart/input}=11 in the input namelist file.
It is also often necessary to set nocolons=.true..

The combination of PNetCDF with the Cray MPI-IO
layer means that the MPI ranks are aggregated into groups
(the number of groups can be based on MPI-IO hints if
provided by the user, but defaults to the Lustre stripe count
of the output file) and then one aggregator from each group
performs the write to file. This reduces both gather times
and contention considerably, particularly since MPI-IO
collective buffering attempts to assign one aggregator per
OST and to make sure that each one is on a different node.

The Cray MPI-IO library has benefitted from extensive
work over the past few years and is fully integrated with the
Cray MPICH library and the Lustre file system structure
(OST striping). It also provides some useful diagnostic tools
to quickly get a handle on what the MPI-IO layer is doing on
a per-file basis.

To use PNetCDF on the Cray XC40, the input and
history (and/or restart) files are striped over as many OSTs as
desired, up to the maximum on the filesystem. For smaller
problem sizes, 4 to 8 stripes can be sufficient, though this
increases for larger-sized problems. A rule of thumb is to
use somewhere between sqrt(nprocs) and 0.5*sqrt(nprocs)
OSTs up to the max configured, where nprocs is the number
of MPI ranks being used; a number of OSTTs evenly
divisible into nprocs is ideal. For the runs in this paper, 16
OSTs were available and 16 stripes were used. Various Cray
MPI-IO environment variables can then be set to check
whether and how the striping has worked.

At runtime, the MPI-IO library checks the Lustre striping
of the output file (inherited from the run directory or
individually specified as shown below) and assigns the same
number of MPI-IO aggregators to that file. It automatically
spreads the aggregators out across the nodes containing
compute ranks as evenly as it can. The compute ranks are
then shared among the aggregators so the I/O is performed
collectively (i.e., in parallel).

The Cray MPIIO layer provides the environment variable
MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLA
Y, which when set writes to stdout the detail of how the
aggregators have been placed among the compute nodes
(NIDS):

Aggregator Placement for wrfinput_d01
RankReorderMethod=3
AggPlacementStride=-1
 AGG Rank nid
 ---- ------ --------
 0 0 nid00016

 1 434 nid00041
 2 868 nid00125
 3 1302 nid00221
 4 1736 nid00245
 5 2170 nid00269
 6 2604 nid00293
 7 3038 nid00317
 8 18 nid00349
 9 452 nid00373
 10 886 nid00773
 11 1320 nid00797
 12 1754 nid00821
 13 2188 nid00845
 14 2622 nid00869
 15 3056 nid00893

Instead of striping the output file before the run (via the

lfs setstripe command), MPI-IO hints can alternatively be
used to set the number of aggregators (or cb_nodes) used for
each file. For example, the following setting ensures that
any file starting with the string “wrfout” will be created and
striped over 16 OSTs and thus that 16 aggregators will be
used for writing it:

MPICH_MPIIO_HINTS= “wrfout*:striping_factor=16”
Subsequently, the runtime environment variable

MPICH_MPIIO_HINTS_DISPLAY can be set to display
whether or not a file has been opened via the MPI-IO layer
and how it was striped (look for cb_nodes=16 to see that we
are indeed using all the OSTs we requested):

PE 0: MPIIO hints for wrfoutput_d01:
cb_buffer_size = 16777216
romio_cb_read = automatic
romio_cb_write = automatic
cb_nodes = 16
cb_align = 2
romio_no_indep_rw = false
romio_cb_pfr = disable
romio_cb_fr_types = aa
romio_cb_fr_alignment = 1
romio_cb_ds_threshold = 0
romio_cb_alltoall = automatic
ind_rd_buffer_size = 4194304
ind_wr_buffer_size = 524288
romio_ds_read = disable
romio_ds_write = disable
striping_factor = 16
striping_unit = 1048576
romio_lustre_start_iodevice = 0
direct_io = false
aggregator_placement_stride = -1
abort_on_rw_error = disable
cb_config_list = *:*
romio_filesystem_type = CRAY ADIO:

Another very useful setting to use at runtime is

MPICH_MPIIO_STATS=1:

+------------------------------------+
| MPIIO read access patterns for
| wrfoutput_d01
| independent reads = 1
| collective reads = 457452
| independent readers = 1
| aggregators = 16
| stripe count = 16
| stripe size = 1048576
| system reads = 7727
| stripe sized reads = 7512
| total bytes for reads = 7964753971
| = 7595 MiB = 7 GiB
| ave system read size = 1030769
| number of read gaps = 1
| ave read gap size = 1
| See "Optimizing MPI I/O on Cray XE
| Systems" S-0013-20 for explanations.
+------------------------------------+

To see even more performance information, try the

setting MPICH_MPIIO_STATS=2, which provides a
timeline viewable in the Cray Apprentice2 tool and data
from which bandwidth charts can be generated, among other
features.

Fig. 4 illustrates the effect on write times and percentage
when the serial NetCDF in Fig. 3 is replaced by pNetCDF.
Again, no OpenMP threads were used. Each aggregator
writes its data to file at close to 0.9GB/s.

PNetCDF is a great technique to use as an alternative to
serial NetCDF and can give good performance. However, as
the number of MPI ranks continues to increase, it too starts
to take an unacceptable percentage of total run time and we
again look for a better alternative. As a rule of thumb, once
the time taken to write a single output frame increases
beyond two or three seconds, it becomes advantageous to
investigate the use of quilt servers.

D. Asynchronous I/O (Quilt Servers)

Figure 4: Parallel NetCDF: Mean time per output step and % time spent

in output (MPI only)

Figure 5: Quilt Servers: Mean time per output step and % time spent in

output (MPI only, 4 extra nodes assigned to quilt servers)

As described above, whether using serial NetCDF or
PNetCDF, all MPI ranks have to wait for the master rank to
finish writing history data to disk before proceeding with
their computation. When this wait time starts to place a
heavier overhead on the total runtime than is acceptable, it
makes sense to set aside one or more ranks (known as quilt
or I/O servers) to deal exclusively with the I/O, so that once
the compute (client) ranks have sent their data to these I/O
servers, they can continue with their work while the data is
formatted and written to disk in the background
(asynchronously). Whether or not this technique is
appropriate depends on the amount of output time taken by
PNetCDF and the number of compute ranks being used,
since it can be inefficient to dedicate too high a proportion of
ranks to I/O only.

WRF provides such I/O server functionality (compile
with –DNETCDF only), enabling the user to select at
runtime via the input namelist_quilt the number of groups of
I/O servers to allocate (nio_groups) and the number of I/O
ranks per group (nio_tasks_per_group). More than one
group of I/O servers is necessary if there is more than one
domain, or if the time between subsequent output steps is
short, since each group can work on only one output frame at
any one time, and if too few groups are available the WRF
simulation will stall waiting for the next group to become
free.

The compute tasks are numbered from 0 upwards in
MPI_COMM_WORLD and their total number nprocs =
nproc_x * nproc_y, where the processor decomposition
(nproc_x, nproc_y) gives the number of compute processors
along the x and y axes, respectively.

The total number of I/O servers (whose first rank number
immediately follows the final compute rank number in
MPI_COMM_WORLD) is given by nio_groups *
nio_tasks_per_group, where nio_tasks_per_group cannot
exceed nproc_y. WRF attempts to match each I/O server
with compute tasks in the east-west rows, and ideally
(though this is not mandatory) nproc_y should be an exact
multiple of nio_tasks_per_groups. This ensures that each
I/O server rank handles the same number of compute ranks,
which should lead to the best balance, but it also has
important implications for the parallel quilt method in the
following section. Together these groups of compute ranks

and I/O server are mapped onto an MPI communicator; the
gather of data from compute ranks onto the I/O server is
implemented using an MPI_Gatherv across that
communicator. See [9] for a nice illustration of how ranks
are assigned to I/O servers.

One I/O group is selected at runtime to handle the output
to a particular file, and within that I/O group the servers
forward their data to a designated root server, which
performs the actual write.

The quilt server technique essentially reduces
significantly the output overhead seen by the compute ranks
in waiting for a write to complete (for all output steps aside
from the final frame). The standard rsl.out.0000 output
mentioned above now should show an effective output time
of well under a second, since that is what a typical compute
rank now sees:

Timing for Writing wrfout_d01_2015-03-10_00_00_00
for domain 1: 0.53356 elapsed seconds

The actual time taken for the gather and write is of course
well above this effective metric. See Appendix A for some
practical hints on using quilt servers on the Cray XC system.

Once I/O servers have been introduced, the performance
bottleneck associated with I/O is no longer the sending of
data to disk (the time to do this remains unchanged, but is
asynchronous), but the gather of data from compute PEs onto
the I/O servers.

The disadvantage of this technique can be that the quilt
server writes are still slow (somewhat equivalent to the
speeds seen in serial NetCDF though with less time spent in
gather due to fewer ranks participating), though overlapped,
and the write of the output at the final step can overwhelm a
short simulation. Fig. 5 shows the case in the previous two
figures where now four nodes of I/O servers (two groups of
16 servers, 8 allocated per node) have been added in each
instance. Also illustrated here is the time to write the final
output. The percentage of time spent in I/O is now well
below 10%, ignoring the final output step. Each root I/O
server writes to disk at a rate of around 0.9GB/s.

As mentioned above, the write time is now overlapped
with the computation meaning that (as is the case here) if the
integration time between output steps is longer than the time
taken to write a file, only one group of I/O servers per
domain will be required and the only apparent overhead will
be in the time to write out the files at the final step.
However, if the simulation is short this final output time
could well overwhelm the total runtime and perform less
well than PNetCDF. If the integration time between output
steps is much shorter than the time to write a file (which can
happen as more and more MPI ranks are assigned to a
computation, or if MPI/OpenMP hybrid mode is used, or if
the output files themselves are much larger than in this
particular case), more and more groups of I/O servers can be
required, meaning increasing numbers of I/O nodes need to
be assigned to the simulation. One scenario where this
might be a problem is in severe thunderstorm forecasting,
where output might be required every simulation minute and
multiple ensembles are needed.

 However, what if we could reduce the amount of time
taken to write an output file as well as overlapping that write

Figure 7: Serial NetCDF: Proportion of time spent in compute and I/O

Figure 9: Quilt Servers: Proportion of time spent in compute and I/O

Figure 10: Parallel NetCDF + Quilt Servers: Proportion of time spent in

compute and I/O

with the computation? That would then minimize the
number of groups of I/O servers necessary to perform the
output, and also reduce the final output step time.
Fortunately, Andrew Porter from the STFC Daresbury
Laboratory has implemented in WRF just such a technique,
which we describe in the following section.

E. Asynchronous I/O with PNetCDF
If the WRF code is compiled using the predefines –

DNETCDF –DPNETCDF –DPNETCDF_QUILT and the
asynchronous I/O servers are requested in the namelist input
file with io_form_history=11, instead of serial I/O, the writes
to disk are performed in parallel using MPI-IO so we gain
the combined benefits of both techniques.

As mentioned in the previous section, it is ideal if the
number of I/O servers per group is evenly divisible into
nproc_y. This clearly leads to the most balanced scenario,
but it turns out it is not functionally necessary in all cases,
particularly when the domain sizes are small and the number
of I/O servers is also small (say, 8 or below). However, this
becomes much more important when the number of servers
is 16. See Appendix B for further discussion.

Fig. 6 shows the improvement seen when combining
PNetCDF with the asynchronous quilt servers. As in the
previous section, four extra nodes are assigned for two
groups of 16 I/O servers. The percentage of time spent in
I/O is now well below 3% and the final step overhead has
dropped significantly. This means that we could write
output much more frequently or scale up the MPI rank
counts much higher while still only requiring two groups of
I/O servers. We can also better handle short runs that might
otherwise be overwhelmed by the final output writes.

The actual write rate of each I/O server group, though
performed in parallel via a collective MPI-IO call, is
somewhat slower than in the PNetCDF-only case, since the
aggregator ranks are now packed onto very few I/O-only
nodes rather than spread out among the compute nodes, so
their I/O is then also concentrated through very few OSTs.

F. Summary Comparison of all Four Methods
 Figs. 7--10 summarize the detail of the previous four

sections, showing how the proportion of time spent in I/O is

Figure 8: Parallel NetCDF: Proportion of time spent in compute and I/O.

Figure 6: Mean time per output step and % time spent in output (MPI

only, 4 extra nodes assigned for quilt servers)

Figure 11: Effective input I/O rates, in GBytes/sec, using 3 DataWarp
SSDs and Lustre (3 and 16 OSTs). Includes data collection and

formatting times for serial and parallel NetCDF

 reduced as the four I/O methods are implemented in turn.

The read and write times shown are effective times as seen
by compute rank 0, and the actual time for the final step
write is included in the “overhead.”

III. CRAY DATAWARP
A recently introduced data storage offering, Cray

DataWarp [5], provides a new, cost effective file-based
storage option. It is comprised of commercial SSD hardware
and Cray-developed software and is installed on Cray XC
service nodes connected directly to the Cray XC system’s
Aries high-speed network (see Fig. 1). This section
discusses the use and performance of DataWarp using the
same WRF benchmark case as in previous sections.

There are several ways to use DataWarp storage,
currently controlled per job, through a supported workload
manager (WLM) such as SLURM or Moab/Torque. A
typical use is as a scratch file space where any data located
on DataWarp exists only for the length of the job that
allocated the space. Any files needed as input to the job or
which are written by the job and need to be permanently
saved are staged by the WLM via user script directives. This
is the method used for this WRF benchmark. WRF initial
conditions, wrfinput*, are prestaged to DataWarp and
forecast history files, wrfout*, written to DataWarp during
the forecast run are staged to permanent Lustre storage at the
end of the job. Note that there are cases in many weather
forecast applications, including WRF, where many
temporary files, such as preprocessing output or periodic
restart files, will not need staging to other storage. The
following directives to control DataWarp allocation and
staging were added to WRF run script. These directives are
parsed by the WLM when the batch job is submitted and take
care of allocation of the proper amount and type of storage
requested as well as staging of any requested files:

#DW jobdw type=scratch access_mode=striped
capacity=1150GiB

#DW stage_in type=file source=INPUT/wrfinput_d01
destination=$DW_JOB_STRIPED/wrfinput_d01

#DW stage_out type=file
destination=OUTPUT/wrfout_d01_2015-03-10_00_00_00
source=$DW_JOB_STRIPED/wrfout_d01_2015-03-
10_00_00_00

In the first directive above we allocate 1.15 TB of scratch

disk storage striped over three DataWarp nodes, 383 GB per
node (the allocation chunk size is defined at installation
time). The next two directives specify files to be staged in
before the job runs and staged out when it completes.

For this study, three DataWarp nodes, each comprised of
two Intel P3608 SSDs, were used for reading WRF initial
conditions and writing forecast history. Each Intel P3608 is
capable of over 5 GB/s when reading and over 3 GB/s
writing, giving each DataWarp node a peak I/O bandwidth of
approximately 8 GB/s read and 6 GB/s write. With multiple
DataWarp nodes, the parallel I/O techniques and WRF
features described in earlier sections also apply.

Figs. 11 and 12 show effective input and output I/O rates
as seen from the WRF computation processes. As
mentioned earlier, effective rates are lower than actual rates
as they include time needed for data collection and
formatting. The serial NetCDF and PNetCDF methods (see
sections B and C above) were evaluated using the three
available DataWarp nodes and then compared to using
Lustre with a striping factor of three to ensure a consistent
number of parallel writers/readers. A comparison with 16
Lustre stripes is also given.

For serial NetCDF, the actual Posix read and write rates
for the DataWarp SSDs were in the range 1.25 to 1.75 GB/s,
compared to just under 1GB/s for the Lustre hardware.
Note that under ideal conditions, maximum write rates are
6GB/s and 4GB/s for one DataWarp node and one Sonexion
2000 OST, respectively.

Figure 12: Effective output I/O rates in GBytes/sec, using 3 DataWarp
SSDs and Lustre (3 and 16 OSTs). Includes data collection and

formatting times for serial and parallel NetCDF

As can be seen in the figures, using the parallel I/O
features of WRF with Cray DataWarp gives better
performance than Lustre for the same number of aggregators.
Using more DataWarp nodes (similar to adding more Lustre
stripes) will decrease the I/O overhead, as seen by the
application, even further.

IV. CONCLUSION
In this paper we have addressed the fact that, for many

applications, I/O overhead can limit scaling to higher
numbers of cores and place an unnecessary cap on potential
throughput. Cray XC systems have the capability to nearly
eliminate these restrictions when used in conjunction with
parallel I/O features implemented within an application.

We have considered the various I/O methods available in
the widely-used WRF software applied to a realistic forecast
case and have demonstrated how to use the parallel I/O
features of the Cray XC40 system to optimize I/O
performance; these features become ever more critical as
forecast domain sizes continue to increase, leading to the
need for higher numbers of MPI ranks for faster computation
and to larger input and output files. While the more familiar
PNetCDF and quilt server techniques are good options in a
range of WRF scenarios, the advantages of combining the
two methods along with the efficient implementation of Cray
MPI-IO enable WRF users to scale their forecast simulations
to higher node counts and larger problem sizes than ever
before. While the default single-writer NetCDF method
limits the MPI-only scaling of this particular forecast case to
approximately 128 nodes, by switching to the superior
parallel I/O options the forecast case scales to at least 512
nodes, cutting the time-to-forecast by over 75%.

While the scaling of the Lustre filesystem is clearly
demonstrated, it can be seen from these initial results that
even very few Cray DataWarp SSDs can provide equivalent
or superior effective I/O performance compared to the same
number of Lustre OSTs, at a much reduced cost and with
higher reliability. Early results from WRF experiments
made at the King Abdullah University of Science and
Technology (KAUST) in Saudi Arabia, where the new Cray
XC40 system Shaheen II has both a Sonexion 2000 Lustre
filesystem with 144 OSTs and also 268 DataWarp nodes,
agree with the initial impression that the comparison between
equal numbers of OSTs and DataWarp nodes shows roughly
equivalent performance, with DataWarp in general
performing better [10]. The KAUST analysis has shown
good WRF I/O scaling so far on up to 100 DataWarp nodes,
with investigations still ongoing.

V. APPENDICES

A. Quilt Servers on the Cray XC40
In this section we give a few tips on using quilt servers

on the Cray XC system. Initially, try setting the number of
I/O server groups to the number of output files per output
step (so if there are four nested domains and one history file
each per step, use four groups). If the “Timing for Writing”
metric in the standard rank 0 output file is still well over a
second, this indicates that a file had to wait for an I/O group

to become available before proceeding, in which case try
more groups until all the writes are overlapped according to
the rank 0 output.

The number of I/O servers required per I/O server group
depends on the domain sizes of the problem under
consideration. Eight I/O servers per group is a good starting
point, but for the problem under consideration, eight was not
enough and so 16 were used. For reference, the error
message observed when eight servers were tried was

---------- FATAL CALLED -----------
FATAL CALLED FROM FILE:<stdin> LINE: 685
Possible 32-bit overflow on output
server. Try larger nio_tasks_per_group
in namelist.

If a WRF run using quilt servers does fail, be sure to look

at the specific rsl.error files for the I/O server ranks, as their
error messages will not show up in rsl.error.0000.

Since the I/O servers gather data from many compute
ranks, they require more memory than the compute ranks
(generally a similar requirement to the serial rank 0
collector) and so cannot be fully packed onto nodes with
large numbers of cores. For the runs in this paper we used 8
ranks per node, spread out evenly across both numa nodes
(sockets). In order to ensure that the compute ranks could be
differently packed on the nodes than the I/O server ranks, the
MPMD (multiple program multiple data) facility of the Cray
ALPS application launcher was used; for example,

aprun -j1 -ss -n 9216 –N36 -d 1 ./wrf.exe :
 -j1 -n128 -N8 -d 4 ./wrf.exe

Previous investigations [3] into spreading the I/O ranks
among the compute ranks have shown no real advantage to
the write performance and this also messes up the careful
compute rank ordering that can be done to minimize the halo
communication times. However, it is advantageous to
spread each I/O group out across the nodes used for the I/O
servers rather than concentrating each group on its own
node/s. This can be achieved via rank reordering within
the I/O servers themselves.

To achieve good quilt server performance on the Cray
XC40, set the environment variable MPICH_COLL_SYNC
= MPI_Gather.

Note that if the WRF code has been compiled with
NETCDF4 options, the quilt server method (and, in fact, the
serial NetCDF method) will write a compressed output file,
which can take a very long time. The namelist setting
use_netcdf_classic=.true. avoids the use of the NETCDF4
compression.

Other useful hints on running WRF can be found in [11]
and [12].

B. Quilt Servers with PNetCDF on the Cray XC40
This section describes some observations made when

experimenting with PNetCDF and I/O servers. When
PNetCDF quilting is enabled, each of the compute ranks
assigned to an I/O group holds one “patch,” and an attempt is
made to stitch those patches together before the data is

finally written to disk. If each I/O server in the group
contains the same number of stitched patches, then all
servers do the same number of writes and collective MPI-IO
is used to write the data. However, if the I/O servers contain
a different number of stitched patches to one another, any
leftover patches will have to be written in independent mode
(i.e., serially). This is immediately detectable during a WRF
simulation from the rank 0 standard output.

If nproc_y exactly divides the nio_tasks_per_group
number, then each server will have an identical number of
compute PEs and we are guaranteed that when their patches
are stitched together, we end up with the same number of
stitched patches on each I/O server and the writes are
performed collectively. However, if this is not the case,
there is a chance that different servers will end up with a
different number of stitched patches. When there are fewer
(8 or less) I/O servers per group, it appears that even with
nproc_y not evenly divisible into nio_tasks_per_group, we
are still very likely to end up with only one patch on each
server and thus the write will still be performed collectively.
However, with 16 I/O servers per group, we very often end
up with two or three patches on some servers, and one on the
rest, and the write speeds drop down to serial. This was very
easily diagnosed on the Cray XC40 by setting the
environment variable MPICH_MPIIO_HINTS_DISPLAY,
which showed the output file being first opened in collective
mode (cb_nodes=16) but then subsequently opened again in
independent mode (cb_nodes=1).

This information enabled us to find a bug in the parallel
NetCDF quilt code that used the default domain
decomposition rather than the user-specified domain
decomposition when assessing whether or not to use
collective I/O. The fact that this had not been detected
before in versions 3.6.1 or 3.7.1 of WRF indicates that
perhaps this technique is not very widely used in the
community; we believe that it deserves much more attention.
The source code has been fixed in the recent WRF v3.8
release.

ACKNOWLEDGMENT
We thank George S. Markomanolis at KAUST for

generously sharing the details of his early work with
DataWarp.

REFERENCES
[1] WRF website, wrf-model.org.
[2] NetCDF, http://www.unidata.ucar.edu/software/netcdf/.
[3] A. Porter and M. Ashworth, “Configuring and Optimizing the

Weather Research and Forecast Model on the Cray XT,” Cray User
Group Proceedings, 2010.

[4] Cray Sonexion Storage, www.cray.com/products/storage/sonexion.
[5] “DataWarp User Guide S-2558-5204,” from Cray Inc.

http://docs.cray.com/books/S-2558-5204/S-2558-5204.pdf.
[6] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R.

Latham, A. Siegel, B. Gallagher and M. Zingale, “Parallel netCDF: A
High-Performance Scientific I/O Interface.” in Proceedings of Super
Computing '03, November 2003.

[7] Parallel NetCDF, http://cucis.ece.northwestern.edu/projects/PnetCDF.
[8] “Getting Started on MPI I/O,” http://docs.cray.com/books/S-2490-

40/, S-2490-40.

[9] E. Kemp, “WRF Quilting and Decomposition Notes,” from NASA
Climate Downscaling Project Meeting, 2015,
https://modelingguru.nasa.gov/servlet/JiveServlet/downloadBody/256
0-102-1-6323/nuwrf_quilting_20150302.pdf

[10] George S. Markomanolis, KAUST, personal communication, March
2016.

[11] J. Michalakes and A. Porter, “Opportunities for WRF Model
Acceleration,” 13th Annual WRF Users Workshop, 2012.

[12] P. Johnsen, “Tuning WRF Forecasts on the Cray XT (Getting the
most out of your XT),” 2010 Alaska Weather Symposium at the
University of Alaska in Fairbanks.

